小口徑非球面斜軸磁流變拋光關鍵技術研究
本文選題:小口徑非球面 + 斜軸; 參考:《湖南大學》2015年博士論文
【摘要】:近年來,隨著高性能非球面光學產(chǎn)品在航空航天、光電通訊、武器裝備等領域的廣泛應用,小口徑非球面光學零件的需求量持續(xù)增長,其精度要求也日益提高。小口徑非球面常采用超精密車削和磨削進行加工,但是車削和磨削會在加工表面殘留加工痕跡和加工缺陷,因此需要后續(xù)的超精密拋光來提高表面質量。由于小口徑非球面狹小的加工空間和高質量的光學表面要求,采用傳統(tǒng)的拋光方法難以加工。針對上述問題,本文將磁流變拋光方法引入到小口徑非球面拋光中,并結合小口徑非球面的加工特點,研究出適合小口徑非球面加工的斜軸磁流變拋光技術。同時將其與傳統(tǒng)的超精密車削和磨削相結合,形成超精密車削與斜軸磁流變拋光以及超精密磨削與斜軸磁流變拋光兩種組合加工工藝,實現(xiàn)對小口徑非球面的高效、高精加工。 本文的研究工作主要包括以下內容: 分析了小口徑非球面的特征和應用需求,,綜述小口徑非球面超精密車削、磨削、拋光的現(xiàn)狀,探討目前小口徑非球面超精密拋光加工中存在的問題,并提出相應的解決措施。 提出了小口徑非球面斜軸磁流變拋光方法,分析其加工原理,并建立加工路徑控制數(shù)學模型,探討小口徑非球面拋光過程中的曲率干涉和刀桿干涉問題,并建立拋光過程中的幾何干涉數(shù)學模型。研究斜軸磁流變拋光去除機理,分析流體動壓力、磁化壓力等參數(shù)對拋光的影響,并建立斜軸磁流變拋光去除數(shù)學模型。為小口徑非球面斜軸磁流變拋光工藝的應用提供理論基礎。 研制了小口徑非球面斜軸磁流變拋光裝置,并對斜軸磁流變拋光頭內部勵磁磁場進行有限元仿真分析。試驗研究了拋光頭的去除性能以及加工區(qū)域的磁場大小。為小口徑非球面斜軸磁流變拋光的實現(xiàn)提供切實可行的加工裝置。 分析了磁流體、磁流變液、復合磁流體等三種磁性拋光液的穩(wěn)定性、成鏈性、粘性、拋光性能等基本性能,配置出兼具高穩(wěn)定性和高剪切去除特性的復合磁流體。試驗分析基于納米金剛石和微米氧化鈰復合磨粒的磁流變拋光性能。為非球面斜軸磁流變拋光的實現(xiàn)提供性能優(yōu)良的拋光液。 將小口徑非球面的超精密車削、磨削與斜軸磁流變拋光有機結合,研制了超精密車削與斜軸磁流變拋光以及超精密磨削與斜軸磁流變拋光兩種組合加工工藝和裝置,并對碳化鎢和不銹鋼小口徑非球面分別進行了試驗研究。
[Abstract]:In recent years, with the wide application of high performance aspheric optical products in aerospace, optoelectronic communication, weapon equipment and other fields, the demand for small aperture aspheric optical parts has been increasing continuously, and its precision requirements are also increasing day by day.The small diameter aspherical surface is usually machined by ultra-precision turning and grinding, but turning and grinding will leave traces and defects on the machined surface, so it is necessary to improve the surface quality by subsequent ultra-precision polishing.Because of the narrow machining space of small aperture aspherical surface and the requirement of high quality optical surface, it is difficult to process by traditional polishing method.Aiming at the above problems, the magneto-rheological polishing method is introduced into the small-aperture aspheric surface polishing, and combining with the processing characteristics of the small-aperture aspheric surface, the inclined axis magneto-rheological polishing technology suitable for the small aperture aspheric surface processing is studied.At the same time, it is combined with traditional ultra-precision turning and grinding to form ultra-precision turning and inclined axis magnetorheological polishing and ultra-precision grinding and inclined axis magnetorheological polishing to realize the high-efficient and high-precision machining of small aperture aspherical surface.The research work of this paper mainly includes the following contents:The characteristics and application requirements of small aperture aspheric surface are analyzed. The present situation of ultra-precision turning, grinding and polishing of small aperture aspheric surface is summarized. The problems existing in the machining of small aperture aspheric surface are discussed, and the corresponding solutions are put forward.This paper presents a method of small aperture aspheric oblique axis magnetorheological polishing, analyzes its machining principle, establishes a mathematical model of machining path control, and discusses the curvature interference and tool rod interference in the process of small aperture aspheric surface polishing.A mathematical model of geometric interference in polishing process is established.The removal mechanism of oblique axis magnetorheological polishing (MRF) was studied and the influence of hydrodynamic pressure and magnetization pressure on the polishing was analyzed.It provides a theoretical basis for the application of small aperture aspheric oblique axis magnetorheological polishing technology.The small diameter aspheric oblique axis magnetorheological polishing device was developed and the finite element simulation analysis of the internal excitation magnetic field of the inclined axis magnetorheological polishing head was carried out.The removal performance of the polishing head and the magnetic field of the processing area were studied.It provides a feasible processing device for the realization of small diameter aspheric oblique axis magnetorheological polishing.The stability, chainness, viscosity and polishing performance of three kinds of magnetic polishing fluids, such as magnetic fluid, magnetorheological fluid and composite magnetic fluid, are analyzed. The composite magnetic fluids with high stability and high shear removal characteristics are configured.The magnetorheological polishing properties of nano-diamond and micron cerium oxide composite abrasive particles were analyzed.It provides an excellent polishing liquid for the realization of aspheric oblique axis magnetorheological polishing.The ultra-precision turning, grinding and inclined axis magnetorheological polishing of small aperture aspherical surface are organically combined, and two kinds of combined processing techniques and devices are developed, such as ultra-precision turning and inclined axis magnetorheological polishing and ultra-precision grinding and inclined axis magnetorheological polishing.The small diameter aspherical surface of tungsten carbide and stainless steel were tested.
【學位授予單位】:湖南大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TG580.692
【參考文獻】
相關期刊論文 前10條
1 孫希威;張飛虎;董申;欒殿榮;;磁流變拋光光學曲面的兩級插補算法[J];光電工程;2006年02期
2 陳丹,阮昊,趙曉楓,趙春梅,何慧靈;用于DVD光學成像系統(tǒng)的非球面透鏡設計[J];光電子·激光;2004年10期
3 彭小強,戴一帆,李圣怡,尤偉偉;回轉對稱非球面光學零件磁流變成形拋光的駐留時間算法[J];國防科技大學學報;2004年03期
4 彭小強;尤偉偉;石峰;;磁流變液剪切屈服應力模型的理論分析與實驗[J];國防科技大學學報;2006年04期
5 宋辭;彭小強;戴一帆;石峰;;基于去除函數(shù)預測模型的磁流變拋光工藝優(yōu)化研究[J];國防科技大學學報;2009年04期
6 袁哲俊;;精密和超精密加工技術的新進展[J];工具技術;2006年03期
7 張峰,潘守甫,張學軍,張忠玉,鄭立功,程灝波,牛海燕;磁流變拋光液的研制[J];功能材料;2002年05期
8 陳琳;龔興龍;江萬權;張培強;;增塑劑對磁流變彈性體磁流變效應的影響[J];功能材料;2006年05期
9 李海濤;彭向和;陳偉民;;磁流變液流變特性的數(shù)值模擬分析[J];功能材料;2006年05期
10 司鵠;李曉紅;;磁流變液的流體動力學理論[J];功能材料;2006年05期
相關博士學位論文 前3條
1 王卓;光學材料加工亞表面損傷檢測及控制關鍵技術研究[D];國防科學技術大學;2008年
2 陳逢軍;非球面超精密在位測量與誤差補償磨削及拋光技術研究[D];湖南大學;2010年
3 王宇;基于B軸控制的微小非球面超精密固定點車削與磨削研究[D];湖南大學;2012年
本文編號:1766446
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1766446.html