T23鋼粗晶熱影響區(qū)再熱裂紋敏感性研究
本文選題:T23鋼 切入點(diǎn):再熱裂紋 出處:《上海交通大學(xué)》2015年博士論文
【摘要】:T23鋼是一種新型鐵素體耐熱鋼,由于其具有良好的焊接性和較高的蠕變強(qiáng)度,被廣泛應(yīng)用于超(超)臨界鍋爐的水冷壁、過(guò)熱器等組件。然而,在制造廠和電廠的T23鋼膜式水冷壁焊接接頭中均出現(xiàn)了裂紋,導(dǎo)致了水冷壁管的爆管及泄漏,嚴(yán)重影響了機(jī)組投運(yùn)后的安全。因此,對(duì)T23鋼焊接接頭再熱裂紋(RC/SRC)的敏感性進(jìn)行更深入的研究具有重要意義。采用實(shí)際焊接接頭的斜Y型坡口試驗(yàn)及基于Gleeble-3500熱力耦合試驗(yàn)機(jī)的熱模擬CGHAZ(coarse-grained heat-affected zone)的STF(strain-to-fracture)試驗(yàn),對(duì)國(guó)產(chǎn)T23鋼CGHAZ再熱裂紋敏感性進(jìn)行評(píng)估。采用透射電鏡(TEM),電子背散射衍射(EBSD)及Jmat Pro軟件對(duì)晶界析出相,裂紋所在晶界的取向差分布,以及晶界附近應(yīng)變的協(xié)調(diào)過(guò)程進(jìn)行表征分析。結(jié)果表明,再熱裂紋在不同溫度下的敏感性受晶界及晶內(nèi)的相對(duì)強(qiáng)度影響。晶界強(qiáng)度由晶界取向差,晶界析出相共同作用,晶內(nèi)強(qiáng)度由晶內(nèi)二次析出相及晶內(nèi)位錯(cuò)密度共同決定。此外,建立了再熱裂紋位置與晶界取向差的關(guān)系,為從晶界工程角度降低裂紋敏感性提供了理論依據(jù)。為闡明影響晶內(nèi)和晶界強(qiáng)度因素的作用,進(jìn)行了試驗(yàn)設(shè)計(jì)。通過(guò)750℃焊后熱處理來(lái)調(diào)控晶內(nèi)強(qiáng)度,采用STF試驗(yàn)對(duì)再熱裂紋敏感性進(jìn)行評(píng)估,結(jié)合SEM,EBSD,TEM及小角度衍射(SAXS)對(duì)析出相種類,位錯(cuò)密度,空洞及微裂紋位置的變化進(jìn)行了研究。結(jié)果表明,一定時(shí)間范圍內(nèi)(1min-1.5h),位錯(cuò)密度的快速下降有效軟化晶內(nèi)強(qiáng)度,塑性變形主要在晶內(nèi)而非在晶界上發(fā)生,再熱裂紋敏感性下降。超過(guò)該時(shí)間范圍后,晶內(nèi)位錯(cuò)密度下降速度放緩,同時(shí)晶內(nèi)析出了大量的MC相,使得晶內(nèi)強(qiáng)度有所增加,塑性變形可能會(huì)通過(guò)晶界的開(kāi)裂進(jìn)行協(xié)調(diào);但是,由于在晶界上新析出了尺寸較小且與基體有較好共格/半共格關(guān)系的M23C6,它與其他碳化物相比增加了晶界的相對(duì)強(qiáng)度,因而抵消了晶內(nèi)強(qiáng)度增加帶來(lái)的不利影響。由于晶內(nèi)及晶界強(qiáng)度的同時(shí)增加,塑性變形只能通過(guò)強(qiáng)度較低的block的開(kāi)裂或者剪切的方式進(jìn)行協(xié)調(diào),因此,再熱裂紋敏感性依然較小。上述結(jié)果為焊后熱處理工藝的設(shè)計(jì)提供了指導(dǎo),以確保焊接接頭投入運(yùn)行后能夠安全服役。本文還設(shè)計(jì)了一種臨界熱循環(huán)工藝,該工藝改變了晶界特征。采用TEM和EBSD對(duì)臨界熱循環(huán)工藝得到的再結(jié)晶晶粒的晶體學(xué)特征,晶界取向差分布,應(yīng)變集中程度進(jìn)行了表征和分析,研究表明,再結(jié)晶晶粒降低了原奧氏體晶界上大角度晶界的比例,并增加晶界的曲折度,阻礙裂紋沿著原奧氏體晶界進(jìn)行直線擴(kuò)展。另外,再結(jié)晶中的M/A(martensite-austenite)組元消耗了一定的碳元素,造成析出相在原奧氏體晶界上難以粗化長(zhǎng)大。同時(shí)M/A組元形成時(shí)帶來(lái)的應(yīng)變集中避開(kāi)了原奧氏體晶界。該工藝實(shí)現(xiàn)了晶界的有效強(qiáng)化,降低了再熱裂紋敏感性。最后基于再熱裂紋的開(kāi)裂機(jī)理及影響晶內(nèi)和晶界強(qiáng)度的因素,構(gòu)建了T23鋼CGHAZ再熱裂紋的開(kāi)裂模型。此模型的建立為T23鋼焊接接頭的焊后熱處理提供了依據(jù),并為其他材料再熱裂紋的研究提供了新的方法和思路。
[Abstract]:T23 steel is a new type of heat-resistant ferritic steel, because of its high creep strength good weldability and high, is widely used in ultra (ultra) supercritical boiler water wall, superheater and other components. However, welding on T23 steel factory and power plant membrane type water wall joints are the crack, LED tube explosion and leakage of the water wall tube, seriously affecting the unit after operation safety. Therefore, the T23 steel welding joint of reheat cracking (RC/SRC) susceptibility to further research has important significance. The actual welding cable Y groove joint test and thermal simulation of CGHAZ Gleeble-3500 thermal coupling based on the testing machine (coarse-grained heat-affected zone) STF (strain-to-fracture) test, evaluation of domestic T23 steel CGHAZ reheat cracking. By transmission electron microscopy (TEM), electron backscatter diffraction (EBSD) and Jmat Pro software on grain boundary precipitation The grain boundary phase, crack orientation difference distribution, and grain boundary strain coordination process were analyzed. The results show that the reheat cracking susceptibility at different temperatures by the relative strength of effect of crystal boundary and in the grain boundary strength by grain boundary misorientation, grain boundary precipitates interaction, intragranular strength by intergranular phase and two a crystallization of dislocation density in the joint decision. In addition, to establish the relationship between the reheat crack position and boundary misorientation, provides a theoretical basis for reducing the crack sensitivity from grain boundary engineering perspective. To elucidate the influence factors in the grain and grain boundary strength, the experimental design. Intragranular strength controlled by 750 DEG C after welding heat treatment with STF test of reheat cracking susceptibility was assessed with SEM, EBSD, TEM and small angle diffraction (SAXS) on the precipitate, dislocation density, void variation and micro crack location are studied . the results show that within a certain time (1min-1.5h), the rapid decline of the dislocation density effectively soften intragranular strength, plastic deformation is mainly in the grain rather than in grain boundaries, decrease reheat cracking. Over the time range, intragranular dislocation density and the rate of decline slowed, intragranular precipitation of a large number of MC the crystal phase, strength increase, plastic deformation may be coordinated through the grain boundary cracking; however, due to the new grain boundary precipitation is smaller in size and with the matrix has good coherent / semi coherent M23C6, compared with other carbide increases the relative strength of the grain boundary, and thus offset the increase intragranular strength adverse effects. Due to the increase of grain and grain boundary strength and plastic deformation only through coordination, lower strength block cracking or shear mode. Therefore, reheat crack sensitivity is still small. Provides guidance for the design of the above results for heat treatment after welding, to ensure welding joint operation safe service. The paper also designs a critical heat recycling process, the process changes the grain boundary characteristics. The recrystallization crystal characteristics of TEM and EBSD on the critical thermal cycling process, grain boundary misorientation the distribution, degree of strain concentration were characterized and analyzed, research shows that the recrystallization grain reduces the original austenite grain boundaries the proportion of high angle grain boundaries, and increased grain boundary tortuosity, block the crack along the original austenite grain boundary line expansion. In addition, the recrystallization of M/A (MARTENSITE-AUSTENITE) component of carbon consumption of certain that caused the precipitates at the grain boundaries to coarsening. At the same time bring strain M/A component is formed when the concentration from the original austenite grain boundary. The process of implementation of the grain boundary Effect of strengthening, reduce the reheat cracking. Finally, based on the cracking mechanism of reheat crack and the influence factors in the grain and grain boundary strength, construct the model of CGHAZ cracking reheat crack of T23 steel. Provide the basis for the establishment of this model for T23 steel welded joints after welding heat treatment, and provides the new research methods and ideas for other materials reheat crack.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG142.73
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 谷興年;核壓力容器的再熱裂紋[J];化工煉油機(jī)械;1983年06期
2 胡倫驥,林兆鳳,李志遠(yuǎn);用單插銷應(yīng)力松弛試驗(yàn)評(píng)定幾種低合金鋼再熱裂紋傾向[J];華中工學(xué)院學(xué)報(bào);1986年04期
3 斯重怸;陳亮山;董秀中;王嚴(yán)巖;陳懷寧;劉俊湖;王紹春;朱文華;董玉蘭;;爆炸法消除再熱裂紋研究[J];焊接;1986年12期
4 李志遠(yuǎn),胡倫驥,林兆鳳;用單插銷應(yīng)力松弛試驗(yàn)評(píng)定幾種低合金鋼再熱裂紋傾向[J];焊接學(xué)報(bào);1987年01期
5 胡倫驥,,劉建華,劉順洪,李志遠(yuǎn);焊接再熱裂紋的短時(shí)蠕變?cè)囼?yàn)研究[J];華中理工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);1995年01期
6 戴真全;;347H奧氏體不銹鋼的焊接熱裂紋和再熱裂紋[J];化工設(shè)備與管道;2010年03期
7 代小號(hào);馮硯廳;;小試樣插銷試驗(yàn)機(jī)的開(kāi)發(fā)及在評(píng)定鍋爐管件再熱裂紋傾向中的運(yùn)用[J];熱加工工藝;2012年03期
8 薛東林;王秀治;;核容器用鋼堆焊層下再熱裂紋敏感性的探討[J];上海金屬;1990年03期
9 姜運(yùn)鍵,孫裕昌,李祿臣;102鋼焊口粗晶區(qū)性能對(duì)產(chǎn)生再熱裂紋的影響[J];河北電力技術(shù);1992年04期
10 任曉;王傳標(biāo);;壓力容器用低合金鋼焊接接頭再熱裂紋的研究進(jìn)展[J];機(jī)械工程材料;2012年05期
相關(guān)會(huì)議論文 前3條
1 劉俊松;陳學(xué)東;卜華全;姜恒;;07MnNiCrMoVDR鋼再熱裂紋敏感性研究[A];第十六次全國(guó)焊接學(xué)術(shù)會(huì)議論文摘要集[C];2011年
2 趙建倉(cāng);姚建華;成鵬;胡德彪;梁振新;趙彥芬;楊惠勤;;超超臨界鍋爐12Cr1MoVG鋼集箱角接頭再熱裂紋原因分析及焊接工藝優(yōu)化[A];第九屆電站金屬材料學(xué)術(shù)年會(huì)論文集(第二卷)[C];2011年
3 何前進(jìn);房務(wù)農(nóng);;B610CF-L2與JFE-HITEN610U2L鋼焊接性對(duì)比研究[A];2011年安徽省科協(xié)年會(huì)——機(jī)械工程分年會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前1條
1 肖英龍;加硼高鉻鋼與低合金鋼異種焊接金屬中硼存在狀態(tài)的研究[N];世界金屬導(dǎo)報(bào);2013年
相關(guān)博士學(xué)位論文 前3條
1 金玉靜;T23鋼粗晶熱影響區(qū)再熱裂紋敏感性研究[D];上海交通大學(xué);2015年
2 韓一純;2.25Cr1Mo0.25V鋼再熱裂紋生成機(jī)理研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
3 劉俊松;承壓設(shè)備調(diào)質(zhì)高強(qiáng)鋼再熱脆化機(jī)理與風(fēng)險(xiǎn)控制方法研究[D];合肥工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前4條
1 劉永超;T23鋼粗晶區(qū)及再熱裂紋敏感性研究[D];上海交通大學(xué);2013年
2 錢俊鋒;2.25Cr-1Mo-0.25V鋼制加氫反應(yīng)器再熱裂紋試驗(yàn)研究[D];浙江工業(yè)大學(xué);2015年
3 李衛(wèi);釩改進(jìn)鋼再熱裂紋超聲對(duì)比試塊及檢測(cè)工藝研究[D];浙江工業(yè)大學(xué);2015年
4 寧保群;插銷式再熱裂紋試驗(yàn)裝置的研究[D];天津大學(xué);2003年
本文編號(hào):1721806
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1721806.html