電火花微孔加工中工具電極振動(dòng)研究
本文選題:微細(xì)加工 切入點(diǎn):電火花 出處:《大連理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:電火花加工可加工任意導(dǎo)電材料,并且在加工過(guò)程中工件與工具電極不接觸,為非接觸加工。微細(xì)電火花可加工微型孔及其他形狀的微型腔,且加工能力與工件材料的硬度、強(qiáng)度無(wú)關(guān)。微細(xì)電火花加工技術(shù)廣泛應(yīng)用在噴油嘴及航空發(fā)動(dòng)機(jī)渦輪葉片的微細(xì)孔加工和微模具制造上。電火花加工中,工件與工具電極在工作液中達(dá)到一定間隙,形成脈沖火花放電,使得工件部分材料熔融、氣化,加工過(guò)程中工件與工具電極間不存在機(jī)械接觸力。但是靜電吸引力、電磁力、工作液流動(dòng)沖刷力、放電爆炸力和氣泡的膨脹與坍塌帶來(lái)的反應(yīng)力等非接觸力存在于加工區(qū)域中。電火花線切割加工中前述力引起電極絲的振動(dòng),影響加工精度。電火花微孔加工中存在同樣的問(wèn)題,但目前很少有文獻(xiàn)涉及電火花微孔加工中工具電極的振動(dòng)問(wèn)題。本文在現(xiàn)有的臥式微細(xì)電火花加工機(jī)床的基礎(chǔ)上,編制了一套機(jī)床數(shù)控程序,主要包括坐標(biāo)顯示及原點(diǎn)設(shè)定、快速定位、單步進(jìn)給、工具電極加工、微孔加工、主軸旋轉(zhuǎn)控制、位置探測(cè)、停止加工、加工過(guò)程信號(hào)顯示模塊,為完成本論文的實(shí)驗(yàn)研究奠定了基礎(chǔ)。本文基于彈性力學(xué),建立了工具電極振動(dòng)理論模型,并設(shè)計(jì)實(shí)驗(yàn)驗(yàn)證了模型準(zhǔn)確性及實(shí)際應(yīng)用的可行性。實(shí)驗(yàn)驗(yàn)證的結(jié)果表明,在同一實(shí)驗(yàn)條件下,加工15組微孔,有14組微孔的孔徑理論計(jì)算值和實(shí)際測(cè)量值差值絕對(duì)值在0.25umm到2.56um之間,其相對(duì)誤差在3%以下;在9組微孔的模型應(yīng)用性驗(yàn)證實(shí)驗(yàn)中,有8組微孔的孔徑理論計(jì)算值與實(shí)際測(cè)量值差值絕對(duì)值介于O.1lum到2.04um,其相對(duì)誤差在3%以下;在6組不同實(shí)驗(yàn)條件應(yīng)用性驗(yàn)證實(shí)驗(yàn)中,6組微孔的孔徑理論計(jì)算值與實(shí)際測(cè)量值差值絕對(duì)值介于0.13umm到2.84um,其相對(duì)誤差均在3%以下。證明了電極振動(dòng)理論模型的有效性。本文對(duì)實(shí)驗(yàn)結(jié)果對(duì)比中的誤差原因進(jìn)行了分析,并探索了不同實(shí)驗(yàn)條件下理論模型的可用性。本文亦探索了不同電壓、電容等電參數(shù)條件對(duì)微孔加工中工具電極振動(dòng)的影響,研究發(fā)現(xiàn)工具電極變形幅值隨電壓增大而增大,隨電容增大先變小后變大。
[Abstract]:EDM can process any conductive material and the workpiece during the machining process and tool electrode contact, non-contact processing. Micro cavity micro EDM processing micro hole and other shapes, and the processing ability and the hardness of the workpiece material strength. Micro EDM technology is widely used in the manufacture of micro hole machining the nozzle and gas turbine engine and micro mold. In the process of EDM, workpiece and tool electrode reaches a certain gap in the working liquid, the formation of pulsed spark discharge, the workpiece material gasification melting, workpiece machining process and tool electrode has no mechanical contact force. But the electrostatic attraction, electromagnetic force. The working fluid flow scouring force, expansion force and bubble discharge explosion and collapse as a result of the reaction force of non contact force exists in the processing area. WEDM in the leading force From the vibration of wire electrode, affect the machining accuracy. The same problem exists electric spark micro machining, but there are few literatures involving electrode vibration problems of micro hole machining tool spark electricity. Based on the existing horizontal micro EDM machine tool, developed a NC program, including coordinate and display set origin, rapid positioning, single feed, tool electrode processing, micro machining, spindle rotation control, position detection, processing, signal processing module, which laid the foundation for the experimental research on the completion of this paper. This paper based on elastic mechanics, a tool electrode vibration theory model, and design experiment to verify the feasibility and practical the application of model accuracy. Experimental results show that under the same experimental conditions, processing 15 groups of micropores, there are 14 groups of micropores pore theoretical calculation and actual measurement value The difference in the absolute value of 0.25umm to 2.56um, the relative error is below 3%; in the application of model validation in experiment group 9 in the 8 group of microporous, microporous pore theoretical calculation value of absolute value of difference between O.1lum and 2.04um with the actual measured value, the relative error is below 3%; in the 6 group of different experimental conditions of application to verify the experiment, 6 groups of micropores aperture theoretical calculation value of absolute value of difference between 0.13umm and 2.84um with the measured value, the relative error is below 3%. Demonstrate the effectiveness of the electrode vibration theory model. The cause of error in comparison of the test results were analyzed, and to explore the availability of different theoretical models under the experimental conditions. This paper also explores the influence of different electrical parameters such as voltage, capacitance conditions on tool micro hole machining electrode vibration. The study found that the tool electrode deformation amplitude increases with the voltage increases with increasing capacitance When you get smaller, you get bigger.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG661
【共引文獻(xiàn)】
相關(guān)期刊論文 前2條
1 高清;李鵬;徐惠宇;黃河;;電火花鉆斜小孔特性研究[J];電加工與模具;2015年03期
2 Alok Kumar Das;Partha Saha;;Machining of circular micro holes by electrochemical micro-machining process[J];Advances in Manufacturing;2013年04期
相關(guān)博士學(xué)位論文 前3條
1 解寶成;微小孔及陣列孔微細(xì)電火花加工的若干基礎(chǔ)問(wèn)題研究[D];哈爾濱工業(yè)大學(xué);2013年
2 范圣耀;高速走絲多次線切割電極絲動(dòng)態(tài)特性及形位穩(wěn)定技術(shù)研究[D];江南大學(xué);2013年
3 白雪;混粉準(zhǔn)干式放電加工機(jī)理及工藝研究[D];山東大學(xué);2014年
相關(guān)碩士學(xué)位論文 前9條
1 何小龍;精密微孔電火花電化學(xué)組合加工技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2012年
2 須杰;模具鋼MIRRAX ESR電火花加工效率的實(shí)驗(yàn)研究[D];華東理工大學(xué);2014年
3 燕冬;基于線切割機(jī)床穿微小孔裝置的設(shè)計(jì)與研究[D];華東交通大學(xué);2013年
4 張俊清;高速流場(chǎng)下電火花小孔加工試驗(yàn)及應(yīng)用研究[D];南京航空航天大學(xué);2014年
5 鄭博文;錐形電極微細(xì)電火花銑削補(bǔ)償方法[D];上海交通大學(xué);2014年
6 丁維;微尺度磨削加工工藝研究[D];東北大學(xué);2011年
7 閻旭強(qiáng);基于硬脆材料微磨削的電鍍金剛石微磨具磨損機(jī)理研究[D];東北大學(xué);2013年
8 吳艾奎;金屬材料微尺度磨削表面質(zhì)量研究[D];東北大學(xué);2014年
9 鄭偉生;TC4鈦合金微磨削表面質(zhì)量影響因素研究[D];東北大學(xué);2013年
,本文編號(hào):1614809
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1614809.html