螺旋齒輪成形磨削及砂輪修整技術(shù)研究
本文選題:漸開(kāi)線螺旋齒輪 切入點(diǎn):成形磨削 出處:《陜西理工學(xué)院》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:齒輪傳動(dòng)的應(yīng)用有著悠久的歷史,是機(jī)械傳動(dòng)中的重要形式之一,漸開(kāi)線螺旋齒輪由于其諸多優(yōu)點(diǎn)逐漸在機(jī)械傳動(dòng)中得到廣泛應(yīng)用。與常用的漸開(kāi)線齒輪加工方法相比,成形磨削是一種高精度、高效率、低成本的硬齒面齒輪精加工方法,成形法磨削漸開(kāi)線螺旋齒輪時(shí)齒輪的精度由成形砂輪的廓形精度決定,如何修整出高精度的砂輪廓形,并精確地加工出齒輪漸開(kāi)螺旋面是齒輪成形磨削研究的重要內(nèi)容之一。以解析幾何知識(shí)與齒輪嚙合原理作為理論基礎(chǔ),通過(guò)分析砂輪成形磨削漸開(kāi)螺旋面工件時(shí)二者的相對(duì)位置關(guān)系,建立漸開(kāi)線螺旋齒輪的數(shù)學(xué)模型,由漸開(kāi)螺旋面與砂輪的相切特性推導(dǎo)出空間接觸線方程,通過(guò)坐標(biāo)變換將空間接觸線方程轉(zhuǎn)換到砂輪坐標(biāo)系中,得到砂輪軸向截形方程。對(duì)砂輪正確廓形的性質(zhì)與接觸線的性質(zhì)進(jìn)行研究分析,為以后的計(jì)算奠定理論基礎(chǔ)。求解接觸線方程對(duì)計(jì)算砂輪截形非常重要,而超越方程是接觸線方程求解的關(guān)鍵。選用MATLAB數(shù)值分析方法中適用的函數(shù)命令求解超越方程,以此計(jì)算出砂輪的正確廓形離散點(diǎn)。根據(jù)砂輪的截形數(shù)據(jù)和修整器的結(jié)構(gòu)特點(diǎn)設(shè)計(jì)出砂輪的修整方法和路線,對(duì)砂輪修整過(guò)程進(jìn)行R參數(shù)編程,設(shè)計(jì)出采用CNC砂輪修整器修整砂輪的數(shù)控程序。為驗(yàn)證砂輪截形數(shù)據(jù)與數(shù)控修整程序的正確性,對(duì)螺旋齒輪進(jìn)行磨削試驗(yàn)。為使成形磨削加工后的結(jié)果更方便、簡(jiǎn)單的顯示出來(lái),采用MATLAB中的GUIDE模塊設(shè)計(jì)開(kāi)發(fā)出可用于計(jì)算砂輪廓形和自動(dòng)生成數(shù)控程序的螺旋齒輪成形磨削用砂輪修整軟件,改變輸入的參數(shù)值砂輪廓形和數(shù)控程序也會(huì)相應(yīng)改變,使應(yīng)用更簡(jiǎn)便化。
[Abstract]:The application of gear transmission has a long history and is one of the important forms of mechanical transmission. Involute helical gear has been widely used in mechanical transmission because of its many advantages. Forming grinding is a kind of high precision, high efficiency and low cost finishing method for hard gear. The precision of gear in grinding involute helical gear by forming method is determined by the profile accuracy of forming grinding wheel, how to repair the profile of high precision grinding wheel, The precise machining of gear involute helical surface is one of the important contents of gear forming grinding. The theoretical basis is the knowledge of analytic geometry and the meshing principle of gear. The mathematical model of involute helical gear is established by analyzing the relative position relation of grinding workpiece with involute helical surface in grinding with grinding wheel, and the spatial contact line equation is derived from the tangent characteristic of involute helical surface and grinding wheel. By transforming the space contact line equation into the grinding wheel coordinate system, the axial section equation of the grinding wheel is obtained. The properties of the correct profile and the contact line of the grinding wheel are studied and analyzed. The solution of contact line equation is very important to the calculation of grinding wheel truncation, and transcendental equation is the key to the solution of contact line equation. The function command used in MATLAB numerical analysis method is used to solve transcendental equation. According to the cutting data of the grinding wheel and the structural characteristics of the dresser, the dressing method and route of the grinding wheel are designed, and the R parameter programming for the dressing process of the grinding wheel is carried out. In order to verify the correctness of grinding wheel profile data and NC dressing program, the grinding test of helical gear is carried out. In order to make the results of forming grinding more convenient, the NC program of grinding wheel with CNC grinding wheel dresser is designed. It is shown simply that the grinding wheel dressing software for helical gear forming grinding can be developed by using GUIDE module in MATLAB, which can be used to calculate the profile of grinding wheel and generate NC program automatically. The profile of the grinding wheel and the NC program will be changed accordingly by changing the input parameter value of the grinding wheel, which makes the application easier.
【學(xué)位授予單位】:陜西理工學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TG743;TG616
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;刀排加工七頭螺旋齒輪[J];儀器制造;1977年01期
2 唐鴻斌;;普通臥銑加工螺旋齒輪[J];機(jī)械工人冷加工技術(shù)資料;1978年03期
3 王金堂;螺旋齒輪注塑模的設(shè)計(jì)及制造[J];模具工業(yè);1986年12期
4 陶海軍;61°螺旋齒輪的加工[J];機(jī)械制造;2002年05期
5 Richard Slattery;Francis Hanejko;Arthur Rawlings;Michael Marucci;邱宇;申小平;;高密度粉末冶金螺旋齒輪[J];粉末冶金工業(yè);2012年04期
6 ;刨螺旋花銷(xiāo)工具[J];機(jī)床與工具;1958年06期
7 ;齒輪各部尺寸計(jì)算表——三 螺旋齒輪[J];機(jī)械工人.冷加工;1958年05期
8 陳揚(yáng)瓊;;復(fù)合套料鍛制120汽車(chē)從動(dòng)螺旋齒輪[J];機(jī)械工人;1984年07期
9 黃復(fù)華;;螺旋齒輪副的棱面嚙合方程及其在齒輪整體誤差測(cè)量中的應(yīng)用[J];磨床與磨削;1990年02期
10 曹存昌;;齒輪基本知識(shí)講座 (十)用直線組成的牙齒曲面[J];機(jī)械工人;1957年11期
相關(guān)會(huì)議論文 前2條
1 許立忠;聞巖;■乃發(fā);;螺旋齒輪彈流潤(rùn)滑研究[A];第二屆全國(guó)青年摩擦學(xué)學(xué)術(shù)會(huì)議論文專(zhuān)輯[C];1993年
2 李貴臣;;漢光——優(yōu)美復(fù)印機(jī)國(guó)產(chǎn)化點(diǎn)滴[A];工程塑料優(yōu)選論文集[C];1993年
相關(guān)碩士學(xué)位論文 前5條
1 王曉飛;螺旋齒輪成形磨削及砂輪修整技術(shù)研究[D];陜西理工學(xué)院;2015年
2 趙亞平;螺旋齒輪嚙合理論研究與試驗(yàn)分析[D];中國(guó)農(nóng)業(yè)大學(xué);2002年
3 程孟彪;從動(dòng)螺旋齒輪坯成形工藝優(yōu)化[D];武漢理工大學(xué);2011年
4 李盼;基于有限元的碟式分離機(jī)應(yīng)力分析與結(jié)構(gòu)優(yōu)化[D];廣東海洋大學(xué);2013年
5 吳昊;螺旋齒輪溫精密塑性成形數(shù)值模擬[D];合肥工業(yè)大學(xué);2008年
,本文編號(hào):1598946
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1598946.html