6082-T6鋁合金軸心受壓構(gòu)件穩(wěn)定性能研究
本文選題:6082-T6鋁合金 切入點(diǎn):軸心受壓試驗(yàn) 出處:《哈爾濱工業(yè)大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:與鋼材相比,鋁合金材料具有自重輕、耐腐蝕、強(qiáng)度范圍廣等優(yōu)點(diǎn)。隨著鋁合金在土木工程中的應(yīng)用越來越廣,對鋁合金結(jié)構(gòu)及構(gòu)件性能的各種研究工作方興未艾。由于鋁合金彈性模量只有鋼材的1/3,其結(jié)構(gòu)和構(gòu)件的變形和穩(wěn)定問題更突出。6082-T6是6×××系列鋁合金中的較新牌號,與國內(nèi)常用的傳統(tǒng)6061-T6鋁合金相比,其強(qiáng)度、耐腐蝕性和焊接性更優(yōu)良,在土木工程中的應(yīng)用前景很好。軸心受壓是結(jié)構(gòu)構(gòu)件最基本的受力形式,本文對國產(chǎn)6082-T6鋁合金軸心受壓構(gòu)件的穩(wěn)定性進(jìn)行了系統(tǒng)的試驗(yàn)和理論研究,為鋁合金結(jié)構(gòu)設(shè)計(jì)和應(yīng)用提供了參考。本文的主要研究內(nèi)容和成果如下。進(jìn)行了117個國產(chǎn)6082-T6鋁合金材料試樣的拉伸試驗(yàn),獲得并統(tǒng)計(jì)了國產(chǎn)6082-T6擠壓鋁合金的主要力學(xué)參數(shù),包括彈性模量E、規(guī)定非比例延伸強(qiáng)度f0.2、抗拉強(qiáng)度fu、斷裂伸長率At和泊松比v。對比了國產(chǎn)6082-T6鋁合金實(shí)測應(yīng)力-應(yīng)變關(guān)系曲線和經(jīng)典Ramberg-Osgood本構(gòu)模型,結(jié)果表明,國產(chǎn)6082-T6鋁合金應(yīng)力-應(yīng)變關(guān)系曲線基本符合Ramberg-Osgood本構(gòu)模型。探討了Ramberg-Osgood本構(gòu)模型中硬化指數(shù)n的不同計(jì)算方法。采用快速退火算法進(jìn)行參數(shù)優(yōu)化,獲得曲線整體擬合最優(yōu)的n值。結(jié)果表明,快速退火算法的計(jì)算結(jié)果比傳統(tǒng)兩點(diǎn)法的計(jì)算結(jié)果的離散程度小;在顯著性水平α=0.05下,n不拒絕服從正態(tài)分布,并獲得了n總體均值的置信區(qū)間。初始彎曲和初始偏心對軸心受壓構(gòu)件的穩(wěn)定性影響較大。目前與鋁合金擠壓型材完整初始彎曲相關(guān)的文獻(xiàn)很少,本文測量了45根國產(chǎn)6082-T6鋁合金擠壓圓管和L型截面型材的若干條母線的完整初始彎曲,獲得了初彎曲最大值和跨中值。推導(dǎo)了軸心受壓構(gòu)件跨中截面荷載初偏心的計(jì)算公式,計(jì)算并統(tǒng)計(jì)了本文所有73根鋁合金試件的跨中初偏心。結(jié)果表明,跨中初偏心大于1.8L/1000(L為上下支座轉(zhuǎn)動中心距離)的試件大約占試件總數(shù)的10%,參考《鋁合金建筑型材第1部分:基材》規(guī)定的普通級精度鋁合金型材的初彎曲允許值,建議下一次修訂規(guī)范時適當(dāng)增大鋁合金軸心受壓構(gòu)件的跨中初彎曲代表值,可以考慮采用1.8L/1000。進(jìn)行了73根國產(chǎn)6082-T6鋁合金擠壓型材試件的軸心受壓試驗(yàn),包括17根H型截面試件、15根箱型截面試件、15根圓管試件和26根L型截面試件,試件正則化長細(xì)比λ?=0.45~3.54,試件兩端采用刀口支座模擬鉸支,獲得了軸壓穩(wěn)定系數(shù)和失效模式。試驗(yàn)結(jié)果表明:所有H型、箱型和圓管試件均發(fā)生繞截面弱軸的彎曲失穩(wěn)破壞,小長細(xì)比的等邊L型試件發(fā)生彎扭失穩(wěn)破壞,其余等邊L型試件發(fā)生彎曲失穩(wěn)破壞,所有不等邊L型試件均發(fā)生彎扭失穩(wěn)破壞。采用有限元分析軟件ABAQUS創(chuàng)建了鋁合金軸心受壓構(gòu)件的精細(xì)化有限元模型,通過與本文試驗(yàn)結(jié)果對比,驗(yàn)證了有限元模型預(yù)測鋁合金軸心受壓構(gòu)件受力性能的可靠性。通過數(shù)值計(jì)算分析了各種因素(主要包括初始彎曲、初始偏心、材料特性、截面類型和截面尺寸等)對鋁合金軸心受壓構(gòu)件整體穩(wěn)定系數(shù)的影響。分析結(jié)果表明:初始彎曲、初始偏心、材料特性和截面類型對鋁合金軸心受壓構(gòu)件穩(wěn)定系數(shù)都有影響;材料硬化指數(shù)n在大于20后對構(gòu)件軸壓穩(wěn)定系數(shù)的影響很小;在不發(fā)生局部失穩(wěn)的條件下,4種截面形式的板件寬厚比和截面高寬比對構(gòu)件軸壓穩(wěn)定系數(shù)都幾乎沒有影響。研究了鋁合金軸心受壓構(gòu)件的設(shè)計(jì)方法,對比了現(xiàn)行各國規(guī)范的軸心受壓構(gòu)件設(shè)計(jì)柱子曲線和本文試驗(yàn)所得軸壓穩(wěn)定系數(shù)。通過批量數(shù)值計(jì)算,獲得了初彎曲分別為L/1000和1.8L/1000時4種截面形式(H型、箱型、圓管和L型)6082-T6鋁合金軸心受壓構(gòu)件的整體穩(wěn)定系數(shù),總計(jì)600根桿件,以Perry-Roberson公式作為柱子曲線基本公式形式,對計(jì)算結(jié)果進(jìn)行了擬合。對比了本文擬合曲線、各國規(guī)范柱子曲線和本文試驗(yàn)結(jié)果。結(jié)果表明:初彎曲采用L/1000時的擬合曲線與歐洲規(guī)范和中國規(guī)范的柱子曲線很接近,本文試驗(yàn)值較均衡地分布在中國規(guī)范柱子曲線的兩側(cè),初彎曲采用1.8L/1000時的擬合曲線比現(xiàn)行中國規(guī)范的柱子曲線更安全,可作為下一次鋁合金規(guī)范修訂的參考。
[Abstract]:Compared with the steel, Aluminum Alloy material has the advantages of light weight, corrosion resistance, strength of a wide range of advantages. With the increasing application of Aluminum Alloy in civil engineering more widely, various research work on the structure and properties of components Aluminum Alloy is just unfolding. The elastic modulus of steel Aluminum Alloy only 1 /3, the deformation and stability of the structure and the component is more prominent in.6082-T6 is a new grade 6 * * * series of Aluminum Alloy, compared with the traditional 6061-T6 Aluminum Alloy commonly used its strength, corrosion resistance and weldability of more excellent application prospect in civil engineering is very good. The axial compression structure is the most basic form of force, this paper the stability of domestic 6082-T6 Aluminum Alloy columns of experimental and theoretical research on the system, which provides a reference for the design and application of Aluminum Alloy structure. The main research contents and results are as follows. The 117 China The tensile test of 6082-T6 producing Aluminum Alloy material samples, and statistics of the main mechanical Aluminum Alloy domestic 6082-T6 extrusion parameters, including elastic modulus E, the specified non proportional extension strength f0.2, tensile strength Fu, elongation of At and Poisson's ratio of V. compared to domestic 6082-T6 Aluminum Alloy measured the stress-strain curve and the classical Ramberg-Osgood the results show that the constitutive model of domestic 6082-T6 Aluminum Alloy stress-strain curves accord with the Ramberg-Osgood constitutive model. The effects of different calculation methods of constitutive model of N hardening index Ramberg-Osgood. The fast annealing algorithm to optimize the parameters, get the optimal value of N curve fitting. The results show that the calculation results of rapid annealing algorithm the results of the two methods than the traditional discrete degree; at significant level a =0.05, n refused to obey the normal distribution, and get the n of the population mean The confidence interval. The initial bend and initial eccentricity on the stability of axial compression members with greater impact. At present Aluminum Alloy extrusion complete initial bending related literature rarely, some bus we measured 45 domestic 6082-T6 Aluminum Alloy extrusion tube and L type profiles complete initial bending, bending and maximum span the value obtained. Calculation formula of axial compression members in cross section of initial eccentricity load calculation, and the statistics of all 73 root Aluminum Alloy test cross in the early eccentric pieces. The results show that the cross in the initial eccentricity is greater than 1.8L/1000 (L is the upper and lower bearing rotation center distance) of the specimen is about the total number of test pieces 10%, reference < Aluminum Alloy Architecture - part first: general level precision Aluminum Alloy > base profiles prescribed by the initial bending allowable value, proposed Specification Revision next time increasing Aluminum Alloy axial compression members span Initial bending can be considered representative of the value of using 1.8L/1000. 73 domestic 6082-T6 Aluminum Alloy extrusion axis compression test specimens, including 17 specimens of H section, 15 box section specimens, 15 pipe specimens and 26 L section specimens, specimen normalized slenderness ratio? =0.45~3.54, specimens of both ends of the knife edge bearing simulation hinge and obtained the axial stability coefficient and failure mode. The experimental results show that all of the H type, box type and tube specimens were lost around the weak cross shaft bending failure, small slenderness ratio of the specimen bending equilateral L type the failure, the rest of the equilateral L type test piece bending failure, all equilateral type L specimens occur bending failure. A refined finite element model by the finite element analysis software ABAQUS to create Aluminum Alloy columns, by comparing with the experimental results, which proves that the finite element model Reliability prediction of mechanical properties of axial compression members by Aluminum Alloy. Through numerical calculation and analysis of various factors (including initial bending, initial eccentricity, material properties, section type and section size) impact on the overall stability coefficient of Aluminum Alloy columns. The results show that initial bending, initial eccentricity, material properties and cross-section types have effects on Aluminum Alloy axial compression stability coefficient; material hardening exponent n is small in 20 after the pressure is greater than the effect of axial stability coefficient; does not occur in the steady condition of the local loss, the 4 section in the form of plate width thickness ratio and section height to width ratio on the axial compression stability coefficient is almost no effect. The design method of Aluminum Alloy columns, compared to the current national standard axial compression column curve and the experimental design of axial compression stability coefficient by batch. Numerical calculation, obtained initial bending are respectively L/1000 and 1.8L/1000 when the 4 section forms (H type, box type, tube type and L) integral stability coefficient Aluminum Alloy axial compression of 6082-T6 components, a total of 600 rods, with Perry-Roberson formula as the basic formula of column curve form, the results of the fitting. This paper compares the fitting curve, all the standard column curves and the experimental results. The results show that the column curves of initial bending curve fitting using L/1000 and European standard and Chinese specification is very close, the test value and both sides are evenly distributed in the Chinese standard column curve, initial bending curve fitting using 1.8L/1000 is more secure than the current standard Chinese column curve, as amended Aluminum Alloy specification of a reference.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TG146.21
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 李玉坤,宋巍,郎悅;鋼筋砼矩形截面軸心受壓構(gòu)件的優(yōu)化設(shè)計(jì)[J];丹東紡專學(xué)報(bào);1998年02期
2 張興虎;劉永輝;馮海潮;;FRP管材軸心受壓構(gòu)件的穩(wěn)定性能[J];玻璃鋼/復(fù)合材料;2014年02期
3 劉巍,楊松,蘇愛紅;鋼結(jié)構(gòu)軸心受壓構(gòu)件的截面確定[J];礦山機(jī)械;2000年08期
4 許偉;單角鋼、雙角鋼軸心受壓構(gòu)件的計(jì)算[J];煤炭工程;2004年12期
5 ;[J];;年期
相關(guān)會議論文 前4條
1 林錯錯;施剛;王元清;石永久;;鋼結(jié)構(gòu)焊接截面軸心受壓構(gòu)件局部整體相關(guān)穩(wěn)定受力性能研究[A];鋼結(jié)構(gòu)工程研究⑧——中國鋼協(xié)結(jié)構(gòu)穩(wěn)定與疲勞分會第12屆(ASSF-2010)學(xué)術(shù)交流會暨教學(xué)研討會論文集[C];2010年
2 顏衛(wèi)亨;賀婷;李新忠;張茂功;;鋁合金圓管軸心受壓構(gòu)件承載力分析[A];第五屆全國現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會論文集[C];2005年
3 謝果清;;混凝土軸心受壓構(gòu)件經(jīng)濟(jì)截面的選定[A];第十屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集第Ⅲ卷[C];2001年
4 黃呈偉;蘇何先;趙惠敏;王,;;鋼結(jié)構(gòu)軸心受壓構(gòu)件整體失穩(wěn)教學(xué)演示臺的研制與應(yīng)用[A];土木建筑教育改革理論與實(shí)踐[C];2008年
相關(guān)博士學(xué)位論文 前2條
1 王譽(yù)瑾;6082-T6鋁合金軸心受壓構(gòu)件穩(wěn)定性能研究[D];哈爾濱工業(yè)大學(xué);2015年
2 鐘煒輝;沖擊荷載作用下軸心受壓構(gòu)件動力屈曲研究[D];西安建筑科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 張磊;屈曲相關(guān)作用下焊接截面軸心受壓構(gòu)件的承載力研究[D];西安建筑科技大學(xué);2009年
2 胡日欽畢力格;角型高強(qiáng)鋁合金軸心受壓構(gòu)件穩(wěn)定承載力研究[D];哈爾濱工業(yè)大學(xué);2013年
3 戈曉玲;鋁合金軸心受壓構(gòu)件非線性穩(wěn)定研究[D];長安大學(xué);2004年
4 趙改改;Q345GJ鋼H型截面軸心受壓構(gòu)件的穩(wěn)定性能研究[D];重慶大學(xué);2011年
5 陳宏寬;Q345GJ鋼軸心受壓構(gòu)件整體穩(wěn)定性能及抗力不定性分析[D];重慶大學(xué);2012年
6 徐東辰;不銹鋼焊接截面軸心受壓構(gòu)件整體穩(wěn)定性能研究[D];北京交通大學(xué);2015年
7 黨偉;剖分T型鋼軸心受壓構(gòu)件整體穩(wěn)定承載力的試驗(yàn)與理論研究[D];西安建筑科技大學(xué);2007年
8 顧石川;熱軋單角鋼軸心受壓構(gòu)件整體穩(wěn)定性能研究[D];西安建筑科技大學(xué);2004年
,本文編號:1596029
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1596029.html