重型數(shù)控落地銑鏜床綜合誤差補(bǔ)償研究
發(fā)布時(shí)間:2018-03-06 11:20
本文選題:落地銑鏜床 切入點(diǎn):綜合誤差建模 出處:《哈爾濱工業(yè)大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:重型數(shù)控落地銑鏜床具有開(kāi)放式結(jié)構(gòu),適合大型零部件高精度平面和孔系的加工,但是精度不足限制了該機(jī)床的應(yīng)用。針對(duì)該機(jī)床空間誤差進(jìn)行控制和補(bǔ)償有著重要的現(xiàn)實(shí)意義和研究?jī)r(jià)值。然而對(duì)該類機(jī)床的精度檢測(cè)和誤差補(bǔ)償技術(shù)的研究還不夠完善。本文首先對(duì)重型數(shù)控落地銑鏜床進(jìn)行了誤差溯源分析,在提出了該機(jī)床的幾何誤差和熱誤差的耦合方式的基礎(chǔ)上,建立了包含幾何與熱耦合誤差和動(dòng)態(tài)跟蹤誤差的綜合誤差模型,并推導(dǎo)了機(jī)床誤差敏感系數(shù)矩陣。分析誤差測(cè)量不確定度并提出測(cè)量精度保持方法。依據(jù)統(tǒng)計(jì)方法得到了激光跟蹤儀測(cè)量要素的不確定度分布。通過(guò)實(shí)驗(yàn)研究得出了機(jī)床低溫升時(shí)以熱漂移誤差為主要熱誤差形態(tài)的特性,建立了空間測(cè)量點(diǎn)熱漂移誤差模型,測(cè)量得出了機(jī)床重復(fù)定位誤差的分布,綜合跟蹤儀和機(jī)床對(duì)測(cè)量不確定度的影響,依據(jù)Monte Carlo法評(píng)估了測(cè)量不確定度。為降低測(cè)量不確定度,優(yōu)化了跟蹤儀的測(cè)量站位,同時(shí)提出了工作空間分割和多站位測(cè)量方法,通過(guò)實(shí)驗(yàn)驗(yàn)證了上述方法對(duì)降低測(cè)量不確定度的有效性。在分區(qū)測(cè)量空間誤差的基礎(chǔ)上辨識(shí)幾何誤差。依據(jù)誤差敏感系數(shù)矩陣分析得到了空間誤差對(duì)幾何誤差的敏感性以及機(jī)床空間尺寸(Y軸、W軸、Z軸坐標(biāo)和刀具尺寸)對(duì)敏感性的影響規(guī)律。在此基礎(chǔ)上提出了采用激光跟蹤儀的四線制測(cè)量與粒子群優(yōu)化算法相結(jié)合的幾何誤差辨識(shí)方法。該方法引入了粒子群優(yōu)化算法,辨識(shí)得到了垂直度誤差、線性位移誤差和轉(zhuǎn)角誤差。以激光干涉儀的測(cè)量結(jié)果為依據(jù)對(duì)比驗(yàn)證了上述誤差辨識(shí)方法的有效性。為辨識(shí)動(dòng)態(tài)跟蹤誤差建立了機(jī)床的跟隨誤差和圓軌跡輪廓誤差模型。測(cè)量了機(jī)床X軸和Y軸聯(lián)動(dòng)的圓軌跡誤差,分析得到圓軌跡誤差隨機(jī)床運(yùn)動(dòng)參數(shù)的變化規(guī)律,基于此變化規(guī)律研究了動(dòng)態(tài)跟蹤誤差和準(zhǔn)靜態(tài)誤差的解耦方法。結(jié)合圓軌跡輪廓誤差模型和解耦得到的動(dòng)態(tài)跟蹤誤差,辨識(shí)得到了機(jī)床運(yùn)動(dòng)軸的參數(shù),通過(guò)試驗(yàn)驗(yàn)證了預(yù)測(cè)模型精度;诒孀R(shí)得出的綜合誤差模型參數(shù)建立了誤差模型,驗(yàn)證了綜合誤差模型預(yù)測(cè)精度,并著重開(kāi)展了基于有限元方法(ANASYS軟件)和實(shí)驗(yàn)方法的機(jī)床Z向空間誤差溯源分析,建立了主軸箱體結(jié)構(gòu)熱變形的誤差尺寸鏈,闡述了Z向熱漂移誤差的產(chǎn)生原因。針對(duì)熱漂移誤差設(shè)計(jì)開(kāi)發(fā)了基于因瓦合金桿的熱誤差實(shí)時(shí)測(cè)量與補(bǔ)償系統(tǒng)。本文采用自主開(kāi)發(fā)的適用于西門子數(shù)控系統(tǒng)的誤差補(bǔ)償器,補(bǔ)償機(jī)床靜態(tài)空間誤差,實(shí)驗(yàn)驗(yàn)證了補(bǔ)償?shù)挠行。依?jù)辨識(shí)得到的伺服參數(shù),調(diào)整系統(tǒng)動(dòng)態(tài)適配時(shí)間,機(jī)床圓軌跡誤差降低了80%。開(kāi)展了熱漂移誤差補(bǔ)償裝置在西門子數(shù)控系統(tǒng)中的應(yīng)用方法研究,補(bǔ)償前后的對(duì)比結(jié)果驗(yàn)證了補(bǔ)償系統(tǒng)的穩(wěn)定有效性。最終,將誤差補(bǔ)償技術(shù)綜合應(yīng)用到重型數(shù)控落地銑鏜床中,補(bǔ)償效果顯著,加工誤差降低35%以上。
[Abstract]:The heavy-duty NC floor milling and boring machine has an open structure, which is suitable for the machining of large parts with high precision plane and hole system. However, the lack of precision limits the application of the machine tool. It has important practical significance and research value to control and compensate the spatial error of the machine tool. However, the research on the accuracy detection and error compensation technology of this kind of machine tool is also made. In this paper, the error of heavy NC ground milling and boring machine is analyzed. On the basis of the coupling mode of geometric error and thermal error of the machine tool, a comprehensive error model including geometric and thermal coupling error and dynamic tracking error is established. The error sensitivity coefficient matrix of machine tool is derived, the uncertainty of error measurement is analyzed, and the measurement precision preserving method is put forward. The uncertainty distribution of measuring elements of laser tracker is obtained by statistical method. The characteristic that the thermal drift error is the main thermal error form when the machine tool rises at low temperature is given. The thermal drift error model of spatial measurement points is established, and the distribution of repeated positioning errors of machine tools is measured. The influence of comprehensive tracker and machine tool on measurement uncertainty is obtained. The measurement uncertainty is evaluated according to Monte Carlo method in order to reduce the uncertainty of measurement. The measuring station of tracker is optimized, and the method of workspace segmentation and multi-station measurement is put forward. The effectiveness of the above method in reducing the uncertainty of measurement is verified by experiments. The geometric error is identified on the basis of the spatial error of the zone measurement, and the geometric error of the spatial error is obtained by the analysis of the error sensitivity coefficient matrix. The sensitivity, the space dimension of machine tool, the coordinate of Z axis of Y axis and the size of cutting tool) affect the sensitivity. On the basis of this, the geometry combining four-wire measurement with laser tracker and particle swarm optimization algorithm is put forward. This method introduces particle swarm optimization (PSO) algorithm. The verticality error is identified. Based on the measurement results of laser interferometer, the validity of the above error identification method is verified. In order to identify the dynamic tracking error, the tracking error and the circular trajectory error of the machine tool are established. Differential model. The circular trajectory errors of X-axis and Y-axis linkage of machine tools have been measured. The variation law of circular trajectory error with machine tool motion parameters is obtained. Based on the variation law, the decoupling method of dynamic tracking error and quasi-static error is studied, and the dynamic tracking error obtained by decoupling is combined with the circular trajectory contour error model and decoupling. The parameters of the moving axis of the machine tool are identified, and the accuracy of the prediction model is verified by experiments. The error model is established based on the parameters of the comprehensive error model obtained from the identification, and the prediction accuracy of the comprehensive error model is verified. Based on finite element method ANASYS software) and experimental method, the error dimension chain of the thermal deformation of spindle box structure is established, which is based on the analysis of the Z-direction spatial error of the machine tool, which is based on the finite element method (FEM) and the experimental method. This paper describes the causes of the Z-direction thermal drift error, designs and develops a real-time measurement and compensation system for the thermal error based on the Intile alloy rod, and adopts an error compensator developed by ourselves for Siemens numerical control system. The validity of the compensation is verified by experiments. According to the identified servo parameters, the dynamic adaptation time of the system is adjusted. The error of circular trajectory of machine tool is reduced by 80%. The application method of thermal drift error compensation device in Siemens numerical control system is studied. The comparison results before and after compensation verify the stability and effectiveness of the compensation system. The error compensation technology is applied to the heavy NC ground milling and boring machine. The compensation effect is remarkable and the machining error is reduced by more than 35%.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG659
,
本文編號(hào):1574620
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1574620.html
最近更新
教材專著