焊接機器人專用MAG逆變焊接電源設(shè)計及工藝試驗
本文關(guān)鍵詞: 機器人焊接 焊接電源 MAG焊接 MC56F8323 焊接專家系統(tǒng) 出處:《北京建筑大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著工業(yè)機器人技術(shù)的發(fā)展,機器人焊接系統(tǒng)被廣泛應(yīng)用于工業(yè)生產(chǎn)中,焊接機器人對配套焊接電源的實時性和穩(wěn)定性要求越來越高。為實現(xiàn)焊接機器人的全位置焊接,焊接電源必須有快速響應(yīng)的能力,能夠保證焊接特性跟隨給定。本文介紹了基于DSP+MCU雙控制構(gòu)架的焊接電源系統(tǒng),對電源內(nèi)部結(jié)構(gòu)和工作原理進行分析,提出包括主電路,主控電路,送絲機構(gòu),人機交互系統(tǒng)和通訊模塊在內(nèi)的多個模塊設(shè)計方案,從硬件和軟件兩方面進行研究。主電路選擇軟開關(guān)全橋逆變形式,采用相移控制諧振的軟開關(guān)技術(shù),消除了開關(guān)損耗。新式的拓撲結(jié)構(gòu),解決了軟開關(guān)電路應(yīng)用于逆變電源時全負載區(qū)的換流問題,使電源功率提高到89%;分析移相PWM控制技術(shù)的原理,選擇UCC3859芯片來實現(xiàn)PWM控制,確保主電路工作過程穩(wěn)定、高效。分析MAG焊接的熔滴過渡過程,并對國內(nèi)外目前應(yīng)用廣泛的幾種電弧控制方法進行研究和比較,提出了一種基于模型參考自適應(yīng)控制的電弧控制方法,采集電弧電壓和焊接電流的反饋,通過基于超穩(wěn)定性理論設(shè)計的模型參考自適應(yīng)方法獲得控制參數(shù)矩陣,對電流的波形進行調(diào)節(jié),保證焊接電源的恒壓特定和弧長穩(wěn)定。詳細介紹了MC56F8323型DSP芯片的工作特性和最小系統(tǒng),圍繞該芯片設(shè)計了主控系統(tǒng)。硬件方面,設(shè)計了開關(guān)電源電路、采樣調(diào)理電路和欠壓,過流等保護電路;軟件方面,介紹了MC56F8323的編程環(huán)境,繪制了主程序和引弧、收弧、波形控制子程序的流程圖,并進行程序編寫。在設(shè)計過程中,充分考慮了硬件和軟件的抗干擾性能。對焊接電源進行了性能測試,通過對5mm厚的12號碳鋼板進行焊接,測量起弧,焊接,收弧及短路時的焊接參數(shù)與波形。進行了多種工藝試驗,包括機器人MAG鋼結(jié)構(gòu)焊接、機器人MIG鋁合金焊接以及雙機器人的協(xié)調(diào)焊接。此外,該焊接電源還與管道焊接機器小車配合進行長輸油氣管道焊接試驗,通過該實驗測量的詳實數(shù)據(jù),建立了全位置焊接專家系統(tǒng),為機器人的全位置焊接提供參考。經(jīng)過測試與試驗,發(fā)現(xiàn)了許多設(shè)計過程中沒有注意到的問題和缺陷,通過分析和討論,對可以解決的問題提出了解決方案,實現(xiàn)焊接電源的升級。測試與實驗的結(jié)果表明:該焊接電源響應(yīng)速度和穩(wěn)定性符合焊接機器人的要求,硬件電路結(jié)構(gòu)簡單,抗干擾性能好,軟件讀寫速度快,功能豐富,基本符合機器人焊接系統(tǒng)對焊接特性的要求,實現(xiàn)了研究目的。
[Abstract]:With the development of industrial robot technology, robot welding system is widely used in industrial production. The real-time and stability requirements of welding robot are more and more high. The welding power source must have the ability of quick response and can ensure the welding characteristics follow the given. This paper introduces the welding power source system based on DSP MCU dual control frame, analyzes the internal structure and working principle of the power supply, and puts forward the main circuit. The main control circuit, wire feeding mechanism, man-machine interaction system and communication module are studied from the aspects of hardware and software. The main circuit chooses the soft-switching full-bridge inverter, and adopts the soft-switching technology of phase-shift control resonance. The switching loss is eliminated. The new topology solves the commutation problem in the full load region of the soft switching circuit when it is applied to the inverter power supply, and increases the power of the power supply to 89. The principle of the phase-shifted PWM control technology is analyzed, and the UCC3859 chip is chosen to realize the PWM control. To ensure the stability and high efficiency of the main circuit, the droplet transfer process of MAG welding is analyzed, and several arc control methods, which are widely used at home and abroad, are studied and compared. An arc control method based on model reference adaptive control is proposed. The feedback of arc voltage and welding current is collected, and the control parameter matrix is obtained by the model reference adaptive method based on super stability theory. The current waveform is adjusted to ensure the constant voltage and arc length of the welding power supply. The working characteristics and minimum system of the MC56F8323 DSP chip are introduced in detail, and the main control system is designed around the chip. In the hardware aspect, the switching power supply circuit is designed. In the aspect of software, the programming environment of MC56F8323 is introduced, the flow chart of main program and arc starting, arc closing, waveform control subroutine is drawn, and the program is compiled. The anti-interference performance of hardware and software is fully considered. The performance of welding power source is tested. By welding the 5mm thick carbon steel plate 12, the starting arc and welding are measured. Welding parameters and waveforms for arc closing and short circuit. Various process tests have been carried out, including robot MAG steel structure welding, robot MIG aluminum alloy welding and dual robot coordinated welding. The welding power supply also cooperated with the pipe welding machine trolley to carry out the welding test of the long oil and gas pipeline. Through the detailed data measured in the experiment, the all-position welding expert system was established. Through testing and testing, many problems and defects that have not been noticed in the design process have been found. Through analysis and discussion, the solutions to the problems that can be solved are put forward. The test and experimental results show that the welding power supply meets the requirements of the welding robot, the hardware circuit is simple, the anti-interference performance is good, the software reading and writing speed is fast, and the function is rich. It basically meets the requirements of robot welding system for welding characteristics, and achieves the purpose of the research.
【學(xué)位授予單位】:北京建筑大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TG409
【參考文獻】
相關(guān)期刊論文 前10條
1 趙舉東,孫棟,趙家瑞;全數(shù)字化控制機器人用IGBT逆變弧焊電源的研究[J];電焊機;1997年02期
2 譚一炯;周方明;王江超;黃志杰;;焊接機器人技術(shù)現(xiàn)狀與發(fā)展趨勢[J];電焊機;2006年03期
3 李春旭;杜麗敏;李鶴岐;尤志春;;IGBT逆變埋弧焊機控制系統(tǒng)設(shè)計[J];電焊機;2006年07期
4 王聰;吳宏杰;魏偉華;;用于DC-DC全橋變換器的全數(shù)字式PWM控制器[J];電源世界;2001年07期
5 薛家祥;姚屏;董飛;文元美;王振民;;脈沖MIG焊前中值波形控制工藝參數(shù)[J];焊接學(xué)報;2008年01期
6 陳善本;;智能化機器人焊接技術(shù)研究進展[J];機器人技術(shù)與應(yīng)用;2007年03期
7 劉建昌,錢曉龍,馮立,陳智鋒,左云;CAN總線及Device Net現(xiàn)場總線[J];基礎(chǔ)自動化;2001年03期
8 陳樹君;于洋;;從埃森展看焊接自動化的發(fā)展[J];金屬加工(熱加工);2010年14期
9 ;逆變焊接電源的發(fā)展[J];航空制造技術(shù);2008年08期
10 李闖;李銳;史元成;忻世吉;;MAG焊原理及應(yīng)用淺析[J];科技創(chuàng)新與生產(chǎn)力;2013年04期
相關(guān)博士學(xué)位論文 前1條
1 王偉明;逆變式GMA單脈沖和雙脈沖焊機數(shù)字控制系統(tǒng)研究[D];北京工業(yè)大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 周文奇;全位置管道自動焊接控制系統(tǒng)的研究[D];山東大學(xué);2006年
2 李冉;基于DSP控制的直流調(diào)速系統(tǒng)及其自適應(yīng)方案的研究[D];合肥工業(yè)大學(xué);2007年
3 朱志甫;開關(guān)電源PWM比較器的研究與設(shè)計[D];西南交通大學(xué);2008年
4 何濱華;基于雙處理器的脈沖MIG焊電源數(shù)字化控制系統(tǒng)的研究[D];天津大學(xué);2008年
5 黃延齡;逆變式交流方波埋弧焊系統(tǒng)研究[D];山東大學(xué);2009年
6 李朋;GMAW-P焊熔滴過渡協(xié)同控制的研究[D];山東大學(xué);2009年
7 梅高青;基于FPGA的全數(shù)字逆變焊接電源主控系統(tǒng)設(shè)計[D];山東大學(xué);2010年
8 倪磊;Devicenet接口焊接電源在焊接機器人系統(tǒng)中的應(yīng)用[D];山東大學(xué);2013年
9 蔣成燕;脈沖MIG焊參數(shù)一元化研究[D];蘭州理工大學(xué);2013年
10 張廣開;鎳基合金TIG焊的電弧控制與光譜分析[D];天津大學(xué);2012年
,本文編號:1545428
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1545428.html