微結(jié)構(gòu)表面非共振橢圓振動(dòng)車(chē)削
本文關(guān)鍵詞: 微結(jié)構(gòu)表面 橢圓振動(dòng) 柔性鉸鏈 表面形貌 金剛石車(chē)削 出處:《吉林大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:近年來(lái),由于微結(jié)構(gòu)表面在光學(xué)、生物醫(yī)學(xué)和機(jī)械電子等領(lǐng)域的廣泛應(yīng)用,其高效率、低成本、多樣化的加工方法也相應(yīng)成為國(guó)內(nèi)外制造行業(yè)的研究熱點(diǎn)。綜合考慮現(xiàn)有的制造技術(shù)來(lái)看,橢圓振動(dòng)切削方法不僅能夠在很大程度上改善材料的加工性能,而且可以實(shí)現(xiàn)微結(jié)構(gòu)表面的高精度創(chuàng)成,具有很大的發(fā)展?jié)摿ΑD壳盀橹,?guó)內(nèi)關(guān)于運(yùn)用橢圓振動(dòng)車(chē)削加工微結(jié)構(gòu)表面的研究還存在一些問(wèn)題,如切削裝置的布局設(shè)計(jì)、微結(jié)構(gòu)表面形貌的多樣化加工方法等。本學(xué)位論文致力于結(jié)合創(chuàng)新的微結(jié)構(gòu)表面橢圓振動(dòng)加工方法,設(shè)計(jì)一種新型非共振橢圓振動(dòng)切削裝置,并通過(guò)仿真分析和離線測(cè)試加以驗(yàn)證,最終實(shí)現(xiàn)無(wú)規(guī)則微結(jié)構(gòu)特征表面的端面車(chē)削。 本文首先通過(guò)分析橢圓振動(dòng)加工表面形貌的生成規(guī)律,提出了一種隨機(jī)化橢圓軌跡振幅加工無(wú)規(guī)則微結(jié)構(gòu)表面的新方法,并通過(guò)表面形貌仿真驗(yàn)證了其理論可行性。在切削進(jìn)行裝置設(shè)計(jì)時(shí),通過(guò)兩種運(yùn)動(dòng)軸布局的對(duì)比分析,選擇了兩個(gè)運(yùn)動(dòng)軸平行布置的布局方式,采用壓電疊堆作為驅(qū)動(dòng)元件,以柔性鉸鏈作為導(dǎo)向機(jī)構(gòu),將生成的運(yùn)動(dòng)傳遞至刀座部分,最終在金剛石刀具處合成橢圓振動(dòng)。確定裝置布局后,依據(jù)實(shí)驗(yàn)需要,對(duì)柔性鉸鏈部分進(jìn)行了尺寸參數(shù)的理論計(jì)算和仿真分析。完成切削裝置的加工裝配后,選用Newport氣浮隔振臺(tái)、PMAC多軸運(yùn)動(dòng)控制器、Siemens工控機(jī)、電容式位移傳感器、信號(hào)發(fā)生器等設(shè)備搭建測(cè)試系統(tǒng),對(duì)裝置進(jìn)行了多項(xiàng)離線性能測(cè)試,得到其靜剛度測(cè)試結(jié)果與設(shè)計(jì)值和仿真值相近,為46.33N/μm,固有頻率測(cè)試結(jié)果與仿真值相比有所降低,為807Hz,滿足實(shí)驗(yàn)要求。階躍響應(yīng)測(cè)試結(jié)果驗(yàn)證了裝置具有良好的動(dòng)態(tài)性能,正弦響應(yīng)測(cè)試反映了裝置在不同工況下對(duì)正弦激勵(lì)信號(hào)的響應(yīng)情況良好,隨后分別合成了運(yùn)動(dòng)輸出端的橢圓軌跡,結(jié)果表明可以滿足橢圓振動(dòng)加工需要。 在使用所設(shè)計(jì)的加工裝置進(jìn)行無(wú)規(guī)則微結(jié)構(gòu)特征表面的橢圓振動(dòng)端面車(chē)削時(shí),首先根據(jù)實(shí)驗(yàn)方案確定了相關(guān)切削參數(shù),然后通過(guò)在線切削實(shí)驗(yàn)驗(yàn)證了裝置的可加工性和上述振幅隨機(jī)化的橢圓振動(dòng)加工方法的有效性,并參照控制變量法設(shè)計(jì)對(duì)比實(shí)驗(yàn),從加工方式、振動(dòng)頻率、進(jìn)給速度、橢圓軌跡位姿、工件材料五個(gè)角度分別分析了各參數(shù)對(duì)微結(jié)構(gòu)表面質(zhì)量的影響。具體表現(xiàn)為:振幅隨機(jī)化的橢圓軌跡車(chē)削方法與傳統(tǒng)車(chē)削和常規(guī)橢圓振動(dòng)車(chē)削相比可以有效弱化加工表面微結(jié)構(gòu)的規(guī)律性分布,,而為了獲得高質(zhì)量的無(wú)規(guī)則微結(jié)構(gòu)特征表面,可以適當(dāng)增加切削裝置的橢圓振動(dòng)頻率,減小進(jìn)給速度,保持水平的橢圓軌跡位姿。
[Abstract]:In recent years, due to the wide application of microstructural surfaces in optical, biomedical, mechanical and electronic fields, it has high efficiency and low cost. Considering the existing manufacturing technology, the elliptical vibration cutting method can not only improve the machining performance of materials to a great extent, but also become the research hotspot of manufacturing industry at home and abroad. It has great potential for development. Up to now, there are still some problems in the research of machining micro-structure surface by using elliptical vibration turning, such as the layout design of cutting device. This dissertation is devoted to the design of a new type of non-resonant elliptical vibration cutting device combined with the innovative machining method of elliptical vibration on the surface of microstructures. Simulation analysis and off-line test are used to verify that the end surface turning of irregular micro-structure feature surface is realized. In this paper, a new method of random elliptical trajectory amplitude machining for irregular microstructural surfaces is proposed by analyzing the generating law of surface morphology in elliptical vibration machining. The theoretical feasibility is verified by surface topography simulation. In the design of the device, the parallel layout of the two moving axes is selected, and the piezoelectric stack is used as the driving element through the comparative analysis of the layout of the two moving axes. Using the flexure hinge as the guiding mechanism, the generated motion is transferred to the tool holder, and finally the elliptical vibration is synthesized at the diamond tool. After determining the layout of the device, according to the need of the experiment, The theoretical calculation and simulation analysis of the dimension parameters of the flexure hinge are carried out. After finishing the machining and assembling of the cutting device, the multi-axis motion controller of Newport air floatation vibration isolator and the capacitive displacement sensor are selected. The signal generator and other equipment set up the test system, and carried on many off-line performance tests to the device. The static stiffness test results are close to the design value and the simulation value, is 46.33 N / 渭 m, and the natural frequency test result is lower than the simulation value. The results of step response test show that the device has good dynamic performance, and the sinusoidal response test shows that the device has good response to sinusoidal excitation signal under different working conditions. The elliptical trajectories at the output end of the motion are synthesized, and the results show that the elliptical vibration machining can be satisfied. When using the designed machining device to lathe the elliptical vibration end face of the irregular microstructural characteristic surface, the relevant cutting parameters are first determined according to the experimental scheme. Then the machinability of the device and the validity of the above mentioned method are verified by the on-line cutting experiment, and the comparative experiment is designed according to the control variable method. The machining mode, vibration frequency and feed speed are analyzed. The position and orientation of the elliptical track, The influence of parameters on the surface quality of microstructures is analyzed from five angles of workpiece material. The results show that the elliptical trajectory turning method with amplitude randomization can be effectively weakened compared with traditional turning and conventional elliptical vibration turning. The regular distribution of the microstructure of the machined surface, In order to obtain a high quality irregular microstructural feature surface, the elliptical vibration frequency of the cutting device can be increased appropriately, the feed speed can be reduced, and the horizontal elliptical locus position can be maintained.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TG51
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李勛,季遠(yuǎn),張德遠(yuǎn);基于有限元分析的橢圓振動(dòng)切削換能器[J];北京航空航天大學(xué)學(xué)報(bào);2005年02期
2 張海濤,張斌;微電子機(jī)械系統(tǒng)技術(shù)及其應(yīng)用[J];電子元件與材料;2002年04期
3 吳鷹飛,周兆英;柔性鉸鏈的設(shè)計(jì)計(jì)算[J];工程力學(xué);2002年06期
4 高印寒,于向軍,王連武,李東旭,王立江;超聲波振動(dòng)精密切削GFRP的實(shí)驗(yàn)研究[J];光學(xué)精密工程;2003年06期
5 楊元華;陳時(shí)錦;段耀凱;程凱;;微結(jié)構(gòu)表面超精密切削加工的關(guān)鍵技術(shù)[J];航空精密制造技術(shù);2007年03期
6 陳博;;微/納結(jié)構(gòu)加工技術(shù)[J];黑龍江科技信息;2008年30期
7 張勤儉;曹鳳國(guó);王先逵;;聚晶金剛石的應(yīng)用現(xiàn)狀和發(fā)展趨勢(shì)[J];金剛石與磨料磨具工程;2006年01期
8 馬春翔,胡德金;超聲波橢圓振動(dòng)切削技術(shù)[J];機(jī)械工程學(xué)報(bào);2003年12期
9 趙宏偉;吳博達(dá);曹殿波;華順明;程光明;楊志剛;曲興田;;直角柔性鉸鏈的力學(xué)特性[J];納米技術(shù)與精密工程;2007年02期
10 田麗梅,任露泉,韓志武,施衛(wèi)平,叢茜;仿生非光滑表面脫附與減阻技術(shù)在工程上的應(yīng)用[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2005年03期
本文編號(hào):1518009
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1518009.html