直流電作用下液—固金屬體系的潤濕行為與界面特征
本文關(guān)鍵詞:直流電作用下液—固金屬體系的潤濕行為與界面特征 出處:《吉林大學(xué)》2015年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 直流電 潤濕性 金屬 表面與界面 電遷移
【摘要】:近年來,作為一項新興的材料加工和制備輔助技術(shù),施加電流(電場)的方法在工業(yè)生產(chǎn)中獲得了越來越廣泛的應(yīng)用。例如,人們發(fā)現(xiàn)當(dāng)對燒結(jié)體施加壓力的同時施以脈沖直流電(SPS)時,燒結(jié)體中通常會有液相出現(xiàn),與傳統(tǒng)燒結(jié)方法相比,燒結(jié)進(jìn)程可以在較低溫度和較短時間內(nèi)完成,并且獲得的燒結(jié)體往往具備更優(yōu)異的性能;對燃燒合成體系施加直流電可以顯著的提升反應(yīng)率和合成速度。此外,由于三維集成電路中覆晶焊點直徑的小型化趨勢,釬焊界面往往形成很高的電流密度以及很大的焦耳熱,高溫能夠迫使低熔點的焊球局部發(fā)生熔化。有研究指出,焊點合金的液化是其服役早期發(fā)生失效的主要原因。雖然如此,人們對于電流在這些應(yīng)用領(lǐng)域作用機(jī)制的認(rèn)識仍然十分有限。由于上述應(yīng)用均涉及到液/固界面的交互作用,我們有理由推測電流可能是通過影響液/固界面的潤濕、傳質(zhì)以及化學(xué)反應(yīng)來改變這些進(jìn)程。然而,目前對于電流作用下液/固體系潤濕性以及界面反應(yīng)的研究還非常少。因此,本文系統(tǒng)研究了電流作用下金屬熔體在金屬基板上的潤濕行為和界面結(jié)構(gòu)轉(zhuǎn)變,揭示電流作用下界面潤濕機(jī)制和影響規(guī)律,為利用電流調(diào)控潤濕性和界面結(jié)構(gòu)奠定基礎(chǔ)。本文的主要研究結(jié)果如下:1.以Sn/(Ni、Cu、Fe)以及Sn57Bi/Cu為代表,研究了直流電作用下化學(xué)反應(yīng)體系的潤濕行為和結(jié)構(gòu)轉(zhuǎn)變。研究發(fā)現(xiàn),施加電流引發(fā)的電遷移效應(yīng)和熔體內(nèi)部復(fù)雜的對流能夠顯著促進(jìn)基板的溶解和界面化學(xué)反應(yīng)。兩者獨(dú)立或協(xié)同的作用能夠破除三相線前沿的氧化膜,從而改善體系的潤濕。而當(dāng)金屬基板表面“干凈”時,電流對于體系潤濕的影響十分有限,但卻顯著地改變了界面結(jié)構(gòu)。2.以Bi/Cu體系為代表,研究了直流電對純?nèi)芙庑腕w系潤濕行為的影響。直流電引發(fā)焦耳熱效應(yīng)使熔滴表面的頂部和三相線附近產(chǎn)生了表面張力的梯度,從而導(dǎo)致了Marangoni對流的發(fā)生,Marangoni對流促進(jìn)了Cu向Bi溶解,而當(dāng)電子流向熔體時,電遷移力能夠進(jìn)一步促進(jìn)基板的溶解。3.在Sn(Sn57Bi)/Cu體系中,直流電對于金屬熔體Sn(Sn57Bi)與金屬Cu基板之間的傳質(zhì)和界面反應(yīng)影響很大。隨著電流密度的增大,陰極Cu基板的溶解不斷加劇,溶解的Cu原子在電遷移力的驅(qū)動下向陽極端遷移,從而使陽極端的Cu基板溶解受到抑制,并在其附近形成大量的金屬間化合物。4.推導(dǎo)并計算了Cu在Sn熔體中擴(kuò)散的有效電荷數(shù)目以及電遷移力的數(shù)值。陰極端Cu溶解的激活能約為不通電條件下溶解激活能的一半,表明施加電流能夠顯著降低陰極端Cu溶解的激活能,而電遷移力是促進(jìn)Cu原子擴(kuò)散的重要原因。5.以Sn/W和Bi/Fe為代表,研究了直流電作用下存在微量溶解體系的潤濕行為。發(fā)現(xiàn)電流引發(fā)的微量溶解以及電磁力作用對潤濕性幾乎沒有任何影響�?傊�,通過對電流作用下不同類型金屬-金屬體系的潤濕和界面研究,不僅有助于豐富電流耦合作用下的界面潤濕和傳質(zhì)理論,而且能夠為通電條件下先進(jìn)材料的連接和材料服役行為的控制提供參考和指導(dǎo)。
[Abstract]:In recent years, as a new material processing and preparation of assistive technology, applied current (electric field) method has been widely used in industrial production. For example, people found that while putting pressure on the sintered body with pulsed direct current (SPS), usually in the sintered body in liquid phase there, compared with the traditional sintering method, the sintering process can be completed in a relatively low temperature and short time, and get the sintered body tend to have more excellent performance; DC power is applied to the combustion synthesis system can improve the reaction rate significantly and the synthesis speed. In addition, due to the miniaturization trend of three-dimensional integrated circuits in flip chip solder joints the diameter of the brazing interface is often formed in high current density and high Joule heat, high temperature and low melting point solder ball can force the local melt. Some research pointed out that the solder alloy liquefaction is its service early The main reason of failure. However, the understanding of mechanism of current in these areas is still very limited. Because of the above application are related to the interaction of liquid / solid interface, we have reason to suppose that the current may be affected by wetting liquid / solid interface, mass transfer and chemical reaction process. However, these changes at present, the current under the action of liquid / solid on wettability and interfacial reaction are very small. Therefore, this paper studies the change of wetting behavior and interfacial structure of metal melt under electric current on the metal substrate, revealing the current role of interfacial wetting mechanism and the influence rule, to lay the foundation for the current regulation of wettability and the interface structure. The main results of this thesis are as follows: 1. to Sn/ (Ni, Cu, Fe and Sn57Bi/Cu) as the representative of the chemical reaction system, DC power under the effect of wetting behavior and Structure change. The study found that electric convection complex internal migration effect and the melt can significantly promote the applied current caused by the dissolution and interfacial chemical reaction substrate. The two independent or synergistic effect can get rid of the three phase front oxide film, so as to improve the system. When the metal substrate surface wetting and "clean", the influence of current system for wetting is very limited, but it significantly changed the structure of the.2. interface in the Bi/Cu system, studied the effect of DC on the wetting behavior of pure dissolution system. DC Joule heating effect caused by the surface tension gradient near the top surface of the droplet and the three-phase line, which leads to the occurrence of Marangoni convection Marangoni, Cu Bi to promote convective dissolution, and when the electron flow to melt, electromigration force can further promote the dissolution of.3. substrate in Sn (Sn57Bi) /Cu system, DC Electric for molten metal Sn (Sn57Bi) and the mass transfer and the interfacial reaction between the metal substrate Cu influence. With the increase of current density, cathode dissolved Cu substrate increased, driving force in the migration of Cu atoms dissolved under extreme Xiangyang electric migration, so that the Cu substrate dissolved Yang extreme is inhibited, and in in the vicinity of the formation of a large number of intermetallic compound.4. is derived and the effective charge number of Cu diffusion in Sn melt was calculated and numerical electromigration force. Cathode dissolution of Cu activation energy of electricity under the condition of dissolution activation energy of half, Biao Mingshi and current can significantly reduce the activation energy of Cu dissolved and extreme Yin. The electromigration force is.5. an important reason for promoting the diffusion of Cu atoms with Sn/W and Bi/Fe as the representative, to study the existence of wetting behavior of trace dissolved system under the action of DC current caused by the dissolved trace. And the electromagnetic force With almost no influence on the wettability and interfacial wetting. In a word, through the study of different types of metal under the function of the current system, not only has the wettability and mass transfer theory can help to enrich the current under the coupling effect, but also for advanced materials electricity under the condition of even the service behavior of connection and control of materials and guidance.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TG111
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 代志強(qiáng);楊延清;張偉;趙光明;羅賢;黃斌;;SiC_f/Ti-43Al-9V復(fù)合材料的界面反應(yīng)[J];稀有金屬材料與工程;2012年05期
2 劉耀輝,何鎮(zhèn)明,于思榮,劉淑范,李慶春;Nb,Ce 對 Al_2O_3-中錳鋼界面的影響[J];材料科學(xué)進(jìn)展;1989年05期
3 熊艷才,洪潤洲,黃志光,王文清;鋁液氫的界面反應(yīng)過程動力學(xué)研究[J];特種鑄造及有色合金;1998年06期
4 朱艷,楊延清,馬志軍,陳彥;SCS-6 SiC/Ti_2AlNb復(fù)合材料的界面反應(yīng)及機(jī)理[J];稀有金屬材料與工程;2002年06期
5 吳銘方;司乃潮;王敬;王鳳江;;鐵/鋁擴(kuò)散偶界面反應(yīng)層生長機(jī)理分析[J];焊接學(xué)報;2011年05期
6 羅恒軍;楊延清;黃斌;羅賢;原梅妮;;SiC_f/Ti-6Al-4V復(fù)合材料的界面反應(yīng)及其影響[J];機(jī)械工程材料;2009年03期
7 劉愛輝;李邦盛;南海;隋艷偉;郭景杰;傅恒志;;鈦鋁基合金與4種陶瓷界面反應(yīng)的研究(英文)[J];稀有金屬材料與工程;2008年06期
8 陳葉生;張國定;吳人潔;;碳/鋁復(fù)合材料界面反應(yīng)對抗拉強(qiáng)度的影響[J];復(fù)合材料學(xué)報;1987年03期
9 孫國雄,廖恒成,潘冶;顆粒增強(qiáng)金屬基復(fù)合材料的制備技術(shù)和界面反應(yīng)與控制[J];特種鑄造及有色合金;1998年04期
10 丁宏升,郭景杰,蘇彥慶,賈均;復(fù)合氧化物噴涂金屬型鑄造純鈦的界面反應(yīng)研究[J];鑄造;1998年09期
相關(guān)會議論文 前10條
1 周韋;劉柯釗;楊江榮;肖紅;陸雷;蔣春麗;;鈾與表面鋁薄膜界面反應(yīng)的俄歇電子能譜分析[A];中國工程物理研究院科技年報(2005)[C];2005年
2 劉鴻羽;劉時兵;史昆;姚謙;楊海濤;陳曉明;;我國鈦合金與鑄型材料界面反應(yīng)研究現(xiàn)狀[A];第十二屆全國鑄造年會暨2011中國鑄造活動周論文集[C];2011年
3 楊揚(yáng);陸?zhàn)?余春;陳俊梅;;熱老化條件下Sn3.5Ag/Cu界面反應(yīng)的研究[A];第十五次全國焊接學(xué)術(shù)會議論文集[C];2010年
4 張顧耀;杜正恭;蔡淑月;李其融;;利用場發(fā)射電子探針鑒定微電子構(gòu)裝覆晶焊點與金屬化層之界面反應(yīng)[A];2006年全國電子顯微學(xué)會議論文集[C];2006年
5 丁浩;鄧雁希;許霞;林海;杜高翔;;機(jī)械力化學(xué)法制備CaCO_3/TiO_2復(fù)合材料的性能與界面反應(yīng)機(jī)理[A];《硅酸鹽學(xué)報》創(chuàng)刊50周年暨中國硅酸鹽學(xué)會2007年學(xué)術(shù)年會論文摘要集[C];2007年
6 胡津;趙雪慧;姚忠凱;;界面反應(yīng)對硼酸鋁晶須增強(qiáng)鋁復(fù)合材料電化學(xué)腐蝕行為的影響[A];復(fù)合材料的現(xiàn)狀與發(fā)展——第十一屆全國復(fù)合材料學(xué)術(shù)會議論文集[C];2000年
7 楊延清;黃斌;李健康;原梅妮;張榮軍;羅賢;;SiCf/Ti基復(fù)合材料的界面反應(yīng)和界面結(jié)合強(qiáng)度(邀請報告)[A];第二屆全國背散射電子衍射(EBSD)技術(shù)及其應(yīng)用學(xué)術(shù)會議暨第六屆全國材料科學(xué)與圖像科技學(xué)術(shù)會議論文集[C];2007年
8 杜艷玲;萬永健;于光遠(yuǎn);許用會;武海紅;;淺析鍍層界面反應(yīng)及組織結(jié)構(gòu)[A];河北省2010年煉鋼—連鑄—軋鋼生產(chǎn)技術(shù)與學(xué)術(shù)交流會論文集(上)[C];2010年
9 李樹杰;王川寶;宋e,
本文編號:1436272
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1436272.html