TBM主梁焊接工藝過程數(shù)值模擬的研究
本文關(guān)鍵詞:TBM主梁焊接工藝過程數(shù)值模擬的研究 出處:《鄭州大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: TBM主梁 溫度場(chǎng) 應(yīng)力應(yīng)變場(chǎng) 焊接順序 殘余應(yīng)力 變形
【摘要】:TBM廣泛應(yīng)用于隧道掘進(jìn)工程中,主梁作為TBM主機(jī)的關(guān)鍵組成部分,承受著刀盤傳遞過來的力和扭矩,并將其傳遞到撐靴上,可以說主梁質(zhì)量的好壞直接影響隧道挖掘的進(jìn)度和質(zhì)量。TBM主梁是典型的箱型梁結(jié)構(gòu),通過焊接制造完成,在焊接完成后不可避免的會(huì)產(chǎn)生殘余應(yīng)力及不可忽視的焊接變形,對(duì)主梁以及TBM整體的工作性能和使用壽命有著很大影響。以往人們通過試驗(yàn)方法來研究焊接工藝,方法復(fù)雜而且消耗較大,進(jìn)入二十一世紀(jì)以來,利用數(shù)值模擬的方法對(duì)焊接工藝進(jìn)行研究得到了廣泛的開展。本文利用有限元軟件ANSYS,選取主梁在實(shí)際工況下應(yīng)力較為集中的部分作為研究對(duì)象,并將該部分提取出來建立簡(jiǎn)化的有限元模型,基于有限元以及熱彈塑性等相關(guān)理論,對(duì)不同的焊接工藝方案進(jìn)行數(shù)值模擬,并得出了溫度場(chǎng)、應(yīng)力場(chǎng)分布變化以及最終的殘余應(yīng)力和變形情況,并加以實(shí)驗(yàn)佐證。主要包括以下內(nèi)容:(1)TBM主梁焊接部位的選取:利用有限元軟件ANSYS Workbench對(duì)TBM主梁施加實(shí)際工作載荷,進(jìn)行靜力學(xué)有限元分析,以找出應(yīng)力較為集中的部分,并以此部分作為焊接工藝的研究對(duì)象。(2)焊接數(shù)值模擬有限元模型的建立:根據(jù)實(shí)際焊接工藝,選擇主梁頂板與腹板的典型焊接結(jié)構(gòu)作為分析對(duì)象,利用有限元軟件ANSYS的參數(shù)化編程語言建立了包含多層多道焊的焊接部位有限元模型。(3)焊接溫度場(chǎng)數(shù)值模擬:確定焊接工藝方案和工藝參數(shù),在ANSYS中對(duì)焊接過程進(jìn)行仿真,得到溫度場(chǎng)的分布變化規(guī)律并分析討論。(4)焊接應(yīng)力應(yīng)變場(chǎng)的數(shù)值模擬:通過熱-應(yīng)力耦合的分析流程,以溫度場(chǎng)分析結(jié)果作為基礎(chǔ),對(duì)不同焊接工藝順序進(jìn)行模擬,得到應(yīng)力應(yīng)變場(chǎng)結(jié)果并對(duì)比討論,為實(shí)際焊接工藝順序的選擇提供一定的理論基礎(chǔ)。(5)采用盲孔法對(duì)口字型焊接樣件殘余應(yīng)力進(jìn)行測(cè)量,并與數(shù)值模擬結(jié)果進(jìn)行對(duì)比,以驗(yàn)證模擬結(jié)果的合理性,從側(cè)面證明焊接順序方案選擇的合理性。
[Abstract]:TBM is widely used in tunneling engineering. As a key component of TBM mainframe, the main beam bears the force and torque from the cutter head and transfers it to the boot. It can be said that the quality of the main beam directly affects the progress and quality of tunnel excavation. TBM main beam is a typical box girder structure, which is completed by welding. It is inevitable that residual stress and welding deformation can not be ignored after welding is completed. It has a great influence on the working performance and service life of the main beam and the whole TBM. In the past, people studied the welding process through the test method, the method is complex and consuming, since 21th century. The numerical simulation method has been widely used to study the welding process. In this paper, the finite element software ANSYS is used to select the part of the main beam stress concentration in the actual working conditions as the research object. The simplified finite element model is established by extracting this part. Based on the theory of finite element and thermoelastic-plastic, different welding process schemes are numerically simulated, and the temperature field is obtained. The distribution of the stress field and the final residual stress and deformation. The main contents of this paper are as follows: the actual working load is applied to the main beam of TBM by using the finite element software ANSYS Workbench. The finite element analysis of statics is carried out to find out the part where the stress is concentrated, and this part is used as the research object of welding process. The finite element model of welding numerical simulation is established: according to the actual welding technology. The typical welding structure of the roof and web of the main beam is selected as the analysis object. Using the parametric programming language of finite element software ANSYS, the numerical simulation of welding temperature field including multi-layer multi-pass welding is established: the welding process scheme and process parameters are determined. The welding process is simulated in ANSYS, and the distribution and variation of temperature field are obtained. The numerical simulation of stress-strain field of welding is analyzed and discussed: through the thermal-stress coupling analysis process. Based on the results of temperature field analysis, different welding process sequences are simulated, and the results of stress and strain field are compared and discussed. The method of blind hole method is used to measure the residual stress of the zigzag welding sample, and the results are compared with the numerical simulation results. In order to verify the rationality of the simulation results, from the side to prove the rationality of the selection of welding sequence.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U455.3;TG44
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 候海量,朱錫,劉潤(rùn)泉;盲孔法測(cè)量921A鋼焊接殘余應(yīng)力的應(yīng)變釋放系數(shù)研究[J];船舶工程;2003年01期
2 朱偉軍;盧文壯;劉楊;楊波;;重型運(yùn)輸車車架焊接溫度場(chǎng)的研究[J];電焊機(jī);2011年10期
3 魏良武,汪建華,陸?zhàn)?液力變矩器焊接工藝參數(shù)的計(jì)算機(jī)優(yōu)化[J];焊接學(xué)報(bào);2001年05期
4 汪建華,戚新海,鐘小敏,上田幸雄,村川英一;焊接結(jié)構(gòu)三維熱變形的有限元模擬[J];上海交通大學(xué)學(xué)報(bào);1994年06期
5 鄭振太;單平;羅震;唐新新;魏欣偉;楊敬雷;;CO_2氣體保護(hù)焊溫度場(chǎng)的數(shù)值模擬[J];天津大學(xué)學(xué)報(bào);2007年02期
6 蔡志鵬,趙海燕,鹿安理,史清宇;焊接數(shù)值模擬中分段移動(dòng)熱源模型的建立及應(yīng)用[J];中國(guó)機(jī)械工程;2002年03期
相關(guān)碩士學(xué)位論文 前3條
1 李冬林;焊接應(yīng)力和變形的數(shù)值模擬研究[D];武漢理工大學(xué);2003年
2 謝元峰;基于ANSYS的焊接溫度場(chǎng)和應(yīng)力的數(shù)值模擬研究[D];武漢理工大學(xué);2006年
3 王成強(qiáng);200km/h高速動(dòng)車組焊接構(gòu)架側(cè)梁焊接順序優(yōu)化研究[D];大連交通大學(xué);2007年
,本文編號(hào):1388375
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1388375.html