基于電場法的二道次漸進成形預(yù)成形型面設(shè)計和研究
本文關(guān)鍵詞:基于電場法的二道次漸進成形預(yù)成形型面設(shè)計和研究 出處:《重慶大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 直壁件 二道次漸進成形 預(yù)成形型面 電場法 工藝優(yōu)化
【摘要】:板材漸進成形技術(shù)在小批量、多品種以及概念產(chǎn)品試制領(lǐng)域具有獨特的優(yōu)勢,有效減小模具設(shè)計、制造成本,易于實現(xiàn)成形加工的自動化操作。在航天航空、汽車制造、船舶、醫(yī)療器械等行業(yè)有著很大的應(yīng)用前景,當(dāng)前完善和掌握該技術(shù)是漸進成形技術(shù)研究和成熟過程中亟待解決的關(guān)鍵問題。在金屬板料數(shù)控單點漸進成形中,經(jīng)常遇到復(fù)雜零件局部存在直壁特征面的情況,導(dǎo)致零件無法一次成形,增加道次數(shù)能夠在一定程度上解決該難題,并優(yōu)化成形質(zhì)量,但增加成形道次無疑會拖延制件生產(chǎn)周期,提高各方面成本,因此在滿足制件性能要求的前提上,應(yīng)盡量減少成形道次。同時,每道次成形策略是制約加工效果的關(guān)鍵,預(yù)成形型面和成形軌跡影響制件厚度分布、幾何精度。為采取成形質(zhì)量和生產(chǎn)周期二者間的折衷方案,所以本文選擇二道次為成形方案,借鑒電場法在鍛造預(yù)成形設(shè)計領(lǐng)域的研究成果,在漸進成形型面設(shè)計中引入電場法思路,為零件直壁預(yù)成形型面的設(shè)計提供理論依據(jù),這對漸進成形技術(shù)的產(chǎn)業(yè)化推廣有重要意義。對此本文主要進行以下內(nèi)容研究:(1)依據(jù)靜電場與板材變形過程中材料速度場的場方程以及能量最小原理的相似性,說明電場法模擬板材最小阻力塑性變形路徑的可行性。并以脹形過程為例,通過ANSYS靜電場模擬分析了等勢線在板材實際加工中的參考意義。引入基于電場法的預(yù)成形型面設(shè)計一般流程到二道次漸進成形,利用UG、ANSYS、Mimics有限元軟件實現(xiàn)等勢線的模擬、提取及建模擬合,以等勢線作為直壁件第一道次加工輪廓。(2)借助響應(yīng)面模型得到直壁件最佳成形效果的參數(shù)組合。本文以板材孔洞體積分數(shù)作為漸進成形板材的損傷破裂預(yù)測評價準(zhǔn)則,構(gòu)建工藝參數(shù)預(yù)成形型面?、進給速度ν、層間距△z與目標(biāo)函數(shù)fc之間的響應(yīng)面模型近似函數(shù)關(guān)系。通過拉丁超立方試驗設(shè)計,利用ABAQUS模擬隨機抽取的20組參數(shù)組合,分析觀察各工藝參數(shù)對孔洞體積分數(shù)fc的影響作用,得到?=0.304V、ν=1916mm/min、△z=0.3mm的參數(shù)組合,并發(fā)現(xiàn)預(yù)成形型面對最終成形效果影響程度最大,進給速度在1750-2100mm/min范圍內(nèi)有利于成形加工的進行,層間距在0.3-1.5mm內(nèi)越小孔洞體積分數(shù)越小。(3)采用所得參數(shù)組合在漸進成形機床上實際加工板料,將加工所得直壁件進行切割后,將截面厚度的測量值與模擬結(jié)果進行對比,發(fā)現(xiàn)板厚最大減薄率的模擬值略大,但模擬與實際加工測量所得的截面厚度曲線基本吻合,表明了模擬的有效性以及優(yōu)化參數(shù)組合的可行性。
[Abstract]:Sheet metal progressive forming technology has unique advantages in the field of small batch, multi-variety and conceptual product trial production, effectively reducing the die design, manufacturing costs, easy to realize the automatic operation of forming processing in aerospace. Automobile manufacturing, ships, medical devices and other industries have a great application prospects. At present, perfecting and mastering this technology is the key problem to be solved in the research and maturation of incremental forming technology. It is often encountered that there is a feature surface in the part of complex parts which can not be formed at one time. Increasing the number of passes can solve the problem to a certain extent and optimize the forming quality. However, increasing the forming pass will undoubtedly delay the production cycle and increase the cost of all aspects. Therefore, in order to meet the performance requirements of the parts, we should try to reduce the number of forming passes. At the same time. The forming strategy of each pass is the key to restrict the machining effect. The preform surface and the forming track affect the thickness distribution and geometric precision of the parts. The tradeoff between the forming quality and the production cycle is adopted. Therefore, this paper chooses the second pass as the forming scheme, draws lessons from the research results of electric field method in the field of forging pre-forming design, and introduces the electric field method in the design of the progressive forming surface. It provides the theoretical basis for the design of the straight wall preform surface. This is of great significance to the industrialization of incremental forming technology. According to the field equation of material velocity field and the similarity of energy minimization principle between electrostatic field and plate deformation process. The feasibility of simulating the minimum resistance plastic deformation path of sheet metal by electric field method is illustrated, and the bulging process is taken as an example. The reference significance of isopotential line in sheet metal processing is analyzed by ANSYS electrostatic field simulation. The general process of pre-forming surface design based on electric field method is introduced to two-pass progressive forming, and UG is used. The simulation, extraction and modeling of the isopotential line are realized by ANSYS Mimics finite element software. Take the isopotential line as the first secondary machining contour of the straight wall part. According to the response surface model, the parameter combination of the optimum forming effect of the straight wall parts is obtained. In this paper, the volume fraction of the holes in the sheet metal is used as the criterion for the prediction and evaluation of the damage and fracture of the progressive forming sheet. How to construct the preformed surface of process parameters? , the response surface model approximate function relation between feed velocity, interval z and objective function FC. Through Latin hypercube test design, 20 groups of parameter combinations are simulated by ABAQUS. The effect of each process parameter on the volume fraction FC of the cavity is analyzed and observed. The parameter combinations of 0.304V, v 1916mm / min and 0.3mm are found to have the greatest influence on the final forming effect. The feed speed of 1750-2100mm / min is propitious to the forming process. The smaller the hole volume fraction is in the range of 0.3-1.5 mm, the smaller the volume fraction of the hole is, and the smaller the volume fraction is, the smaller the hole volume fraction is, and the smaller the volume fraction is, the smaller the hole volume fraction is, and the smaller the volume fraction of the hole is. By comparing the measured results with the simulation results, it is found that the simulated value of the maximum thinning rate of the plate thickness is slightly larger, but the section thickness curve obtained by the simulation and the actual processing measurement is basically consistent. The effectiveness of the simulation and the feasibility of optimizing the combination of parameters are demonstrated.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TG306
【參考文獻】
相關(guān)期刊論文 前10條
1 馮帆;高錦張;賈俐俐;王洋;;直壁筒形件凸模支撐漸進成形工藝的數(shù)值模擬[J];鍛壓技術(shù);2014年02期
2 宋修成;陸彬;陳軍;王宇樂;;板料漸進成形件表面質(zhì)量的影響因素分析[J];機械工程學(xué)報;2013年08期
3 周六如;;板料數(shù)控漸進成形變形區(qū)厚度變化規(guī)律的研究[J];機械工程學(xué)報;2011年18期
4 周杰;胡建標(biāo);張旭;李軍超;;兩道次板材漸進成形過程仿真與實驗驗證[J];重慶大學(xué)學(xué)報;2011年07期
5 吳堅;Jocher Dietrich;李強;;無支撐板材數(shù)字化漸進成形工藝研究[J];中國機械工程;2010年16期
6 徐梁;高錦張;賈俐俐;蔣松;;漸進成形直壁筒形件圓角缺陷的模擬分析[J];鍛壓技術(shù);2010年03期
7 蔡軍;李付國;;一種基于三維靜電場模擬的預(yù)制坯設(shè)計新方法[J];機械科學(xué)與技術(shù);2009年10期
8 周六如;;基于數(shù)控漸進成形技術(shù)的方形盒成形工藝[J];鍛壓技術(shù);2009年04期
9 周六如;周銀美;;板料直壁零件數(shù)控漸進成形[J];塑性工程學(xué)報;2009年03期
10 許自然;高霖;崔震;徐巖;;不同壓頭形狀下板料漸進成形性能研究[J];機械科學(xué)與技術(shù);2009年05期
相關(guān)博士學(xué)位論文 前3條
1 張旭;金屬板料數(shù)控漸進成形技術(shù)成形極限與回彈控制研究[D];重慶大學(xué);2010年
2 毛鋒;金屬板材數(shù)控漸進成形關(guān)鍵技術(shù)研究[D];華中科技大學(xué);2005年
3 周六如;金屬板料數(shù)控漸進成形機理及工藝的研究[D];華中科技大學(xué);2004年
相關(guān)碩士學(xué)位論文 前5條
1 池永濤;導(dǎo)電加熱漸進成形試驗和模擬研究[D];大連理工大學(xué);2012年
2 曹捚匯;單點漸進成形過程中成形缺陷的數(shù)值模擬研究[D];吉林大學(xué);2010年
3 張國威;基于多點成形的板料復(fù)合漸進成形數(shù)值模擬[D];吉林大學(xué);2010年
4 肖軍;材料成形過程的類等勢場法模擬與預(yù)成形設(shè)計[D];西北工業(yè)大學(xué);2006年
5 李超;材料成形過程中的類等勢場模擬法研究[D];西北工業(yè)大學(xué);2005年
,本文編號:1372554
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1372554.html