多軸數(shù)控機(jī)床刀具端動(dòng)態(tài)特性測(cè)試評(píng)估及其軟件開發(fā)
本文關(guān)鍵詞:多軸數(shù)控機(jī)床刀具端動(dòng)態(tài)特性測(cè)試評(píng)估及其軟件開發(fā) 出處:《華中科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 多軸數(shù)控機(jī)床 動(dòng)態(tài)特性 頻響函數(shù) 響應(yīng)耦合 動(dòng)剛度
【摘要】:機(jī)床的動(dòng)態(tài)特性影響其加工穩(wěn)定性,從而影響加工效率、工件質(zhì)量、刀具壽命等關(guān)鍵指標(biāo),通過穩(wěn)定性葉瓣圖來獲知機(jī)床的加工穩(wěn)定性,其必要前提是得到機(jī)床刀具端的頻響函數(shù)。為避免重復(fù)實(shí)驗(yàn),采用三分量響應(yīng)耦合子結(jié)構(gòu)分析法,建立機(jī)床刀具端頻響函數(shù)的預(yù)測(cè)模型,將機(jī)床系統(tǒng)劃分為主軸-刀柄上段子結(jié)構(gòu)、刀柄下段子結(jié)構(gòu)和刀具子結(jié)構(gòu),通過耦合各子結(jié)構(gòu)頻響函數(shù)獲得整體頻響函數(shù)。采用復(fù)剛度矩陣方法辨識(shí)柔性結(jié)合部,用一個(gè)2×2的對(duì)稱復(fù)剛度矩陣代表柔性結(jié)合部,通過逆響應(yīng)耦合法求解矩陣中三個(gè)未知矩陣元素,可預(yù)測(cè)不同刀具刀柄組合的刀尖點(diǎn)頻響函數(shù)。對(duì)比復(fù)剛度矩陣計(jì)算方法和遺傳算法辨識(shí)刀柄刀具之間柔性結(jié)合部頻響特性的效率和精度,結(jié)果顯示復(fù)剛度矩陣計(jì)算方法模型更精確,計(jì)算效率更高,而對(duì)實(shí)驗(yàn)誤差較敏感。選取靜剛度、固有頻率、最小動(dòng)剛度、界寬、過柔度等5個(gè)動(dòng)態(tài)特性評(píng)價(jià)參數(shù),給出通過頻響函數(shù)來計(jì)算這些評(píng)價(jià)參數(shù)的計(jì)算過程。基于以上理論,整合MATLAB的計(jì)算工作和ANSYS的仿真工作,開發(fā)相應(yīng)的機(jī)床動(dòng)態(tài)特性預(yù)測(cè)與評(píng)估軟件。按照樹狀節(jié)點(diǎn)管理結(jié)構(gòu)搭建了軟件的整體框架,將RCSA方法和評(píng)價(jià)參數(shù)提取方法的應(yīng)用簡(jiǎn)化為軟件中的指定輸入和輸出的操作,輸入所需的實(shí)驗(yàn)數(shù)據(jù)和刀柄模型,輸出預(yù)測(cè)的頻響函數(shù)等。該軟件可用于預(yù)測(cè)和評(píng)估不同工作位姿下不同刀柄、刀具組合的機(jī)床刀具端動(dòng)態(tài)特性;谝陨系睦碚摲椒,在多軸數(shù)控機(jī)床動(dòng)態(tài)特性預(yù)測(cè)與評(píng)估軟件平臺(tái)上,分別對(duì)重型五軸聯(lián)動(dòng)機(jī)床和車銑復(fù)合加工中心在不同工作位姿情況下的動(dòng)態(tài)特性進(jìn)行測(cè)試、預(yù)測(cè)和評(píng)估,給出了機(jī)床動(dòng)態(tài)特性的定量評(píng)估,并在此基礎(chǔ)上對(duì)機(jī)床進(jìn)行加工穩(wěn)定性分析。
[Abstract]:The dynamic characteristics of the machine tool affect the machining stability, thus affecting the machining efficiency, workpiece quality, tool life and other key indicators. The stability of the machine tool can be obtained by the stable blade diagram. The necessary premise is to obtain the frequency response function of the tool end of the machine tool. In order to avoid repeated experiments, the prediction model of the frequency response function of the tool end of the machine tool is established by using the three-component response coupling substructure analysis method. The machine tool system is divided into the spindle and the upper segment structure of the tool handle, the substructure of the lower section of the tool handle and the tool substructure. The global frequency response function is obtained by coupling the frequency response function of each substructure. The flexible joint is identified by the complex stiffness matrix method, and a 2 脳 2 symmetric complex stiffness matrix is used to represent the flexible joint. The inverse response coupling method is used to solve the three unknown matrix elements in the matrix. The frequency response function of different tool shanks can be predicted, and the efficiency and precision of identifying the frequency response characteristics of flexible joint between tools with different tool-shanks can be compared with the calculation method of complex stiffness matrix and genetic algorithm. The results show that the calculation method of complex stiffness matrix is more accurate, more efficient and more sensitive to experimental errors. The static stiffness, natural frequency, minimum dynamic stiffness and boundary width are selected. The calculation process of these parameters is given by frequency response function. Based on the above theory, the calculation work of MATLAB and the simulation work of ANSYS are integrated. The software for predicting and evaluating the dynamic characteristics of machine tools is developed, and the whole framework of the software is built according to the tree node management structure. The application of RCSA method and evaluation parameter extraction method is simplified as the operation of specified input and output in software, the input of required experimental data and cutter handle model. The software can be used to predict and evaluate the dynamic characteristics of tool ends with different tool-shanks and tool combinations under different working position and posture. Based on the above theory and method, the software can be used to predict the frequency response function of the output prediction. The dynamic characteristics of heavy five-axis machine tool and turn-milling composite machining center were tested, predicted and evaluated on the platform of multi-axis NC machine tool dynamic prediction and evaluation software. The quantitative evaluation of the dynamic characteristics of the machine tool is given, and on the basis of this, the machining stability of the machine tool is analyzed.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG659
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周凱;虛擬軸數(shù)控機(jī)床刀具運(yùn)動(dòng)狀態(tài)的實(shí)時(shí)規(guī)劃[J];信息與控制;1999年05期
2 賈吉林;楊紅麗;;數(shù)控機(jī)床刀具磨損在線監(jiān)測(cè)建模與研究[J];現(xiàn)代制造技術(shù)與裝備;2009年05期
3 馬旭;陳捷;;數(shù)控機(jī)床刀具磨損監(jiān)測(cè)方法研究[J];機(jī)械;2009年06期
4 邱炎兒;;淺談數(shù)控機(jī)床刀具磨損的監(jiān)測(cè)方法[J];長(zhǎng)春理工大學(xué)學(xué)報(bào)(高教版);2010年04期
5 李大勝;繆鵬程;張輝;;數(shù)控機(jī)床刀具磨、破損狀態(tài)監(jiān)測(cè)方法的探討[J];赤峰學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年21期
6 馬旭;;數(shù)控機(jī)床刀具磨損監(jiān)測(cè)數(shù)據(jù)處理方法[J];組合機(jī)床與自動(dòng)化加工技術(shù);2009年07期
7 曾祥超;陳捷;;數(shù)控機(jī)床刀具故障在線監(jiān)測(cè)系統(tǒng)開發(fā)[J];機(jī)械設(shè)計(jì)與制造;2009年11期
8 劉華金;;基于神經(jīng)網(wǎng)絡(luò)的數(shù)控機(jī)床刀具磨損預(yù)測(cè)模型研究[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年06期
9 李大勝;繆鵬程;;遺傳神經(jīng)網(wǎng)絡(luò)在數(shù)控機(jī)床刀具監(jiān)測(cè)與控制系統(tǒng)中的應(yīng)用[J];湖南工業(yè)大學(xué)學(xué)報(bào);2013年03期
10 劉光帥;;基于網(wǎng)絡(luò)制造環(huán)境的機(jī)床刀具動(dòng)態(tài)選擇模型的研究[J];工具技術(shù);2007年05期
相關(guān)重要報(bào)紙文章 前1條
1 李一寧;網(wǎng)銷機(jī)床刀具有點(diǎn)難[N];機(jī)電商報(bào);2012年
相關(guān)碩士學(xué)位論文 前10條
1 吳鵬飛;多軸數(shù)控機(jī)床刀具端動(dòng)態(tài)特性測(cè)試評(píng)估及其軟件開發(fā)[D];華中科技大學(xué);2015年
2 寧倩;數(shù)控機(jī)床刀具磨損狀態(tài)監(jiān)測(cè)系統(tǒng)及其信息傳輸標(biāo)準(zhǔn)研究[D];天津大學(xué);2012年
3 季麗麗;基于免疫神經(jīng)網(wǎng)絡(luò)數(shù)控機(jī)床刀具的故障預(yù)測(cè)[D];沈陽(yáng)大學(xué);2013年
4 盧克超;組合機(jī)床刀具智能化CAD系統(tǒng)開發(fā)[D];西華大學(xué);2007年
5 陳子罱;基于模式識(shí)別的數(shù)控機(jī)床刀具檢測(cè)方法[D];北京郵電大學(xué);2013年
6 李后上;基于RFID的數(shù)控機(jī)床刀具識(shí)別系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];南京農(nóng)業(yè)大學(xué);2010年
7 高鵬磊;數(shù)控機(jī)床刀具磨損破損檢測(cè)技術(shù)研究[D];河南科技大學(xué);2013年
8 官金;基于工作電流的多機(jī)床刀具失效研究[D];寧波大學(xué);2013年
9 龍飛;大型加工機(jī)床刀具空間坐標(biāo)的激光定位研究[D];武漢理工大學(xué);2012年
10 夏斌;基于SolidWorks專用機(jī)床刀具智能CAD系統(tǒng)的研究[D];西華大學(xué);2008年
,本文編號(hào):1362626
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1362626.html