蝶形斜拉橋抗震性能分析
發(fā)布時間:2021-10-02 03:57
為研究一座鋼-混組合結構蝶形斜拉橋的抗震性能,以武水大橋為工程背景,通過Midas/civil 2018建立了主橋上部結構的三維有限元分析模型。首先,選用子空間迭代法和多重李茲向量法對主橋上部結構進行模態(tài)分析。再運用地震反應譜分析法和動態(tài)時程分析法,對主橋上部結構在各向地震荷載作用下所產(chǎn)生的地震響應進行對比分析。研究結果表明:該蝶形斜拉橋分別在豎向以及縱向地震激勵下所產(chǎn)生的地震效應較弱,而在橫向地震荷載作用下的地震效應則較為明顯,鋼拱塔頂部的最大橫向位移達66.581 mm,但完全滿足設計要求。由此可知,主塔采用鋼-混組合結構的蝶形斜拉橋具有很好的抗震性能。
【文章來源】:公路工程. 2020,45(04)北大核心
【文章頁數(shù)】:7 頁
【部分圖文】:
鋼拱塔剪力圖
為研究該斜拉橋的動力學特性以及地震動力響應問題,運用Midas/Civil2018建立主橋上部結構的有限元計算模型。該計算模型共有1 405個節(jié)點,1 420個單元,采用空間梁單元模擬主梁和橋塔,拉索采用桁架單元;橋墩與鋼拱塔采用鉸結的形式,拉索單元與主梁、鋼拱塔均采用剛性連接。該斜拉橋的有限元計算模型如圖2所示。2 主橋動力特性計算
子空間迭代法主要是通過重復運用矩陣迭代法和瑞利-李茲法來求解自由度較多結構體系的低階振型及頻率的方法。它可以有效解決頻率相等或者幾個固有頻率相差很小時收斂速度慢難點,進而能夠極大地提升計算分析的速度和精度,因此它普遍用來求解大型復雜結構的動力響應問題;谝呀⒌腗idas計算模型,利用Midas計算軟件中的特征值分析求解出該斜拉橋成橋狀態(tài)下的動力特性,算得前10階的固有頻率以及相應的主振型,并對各階振型的特點加以描述分析,具體如表1所示。另外列出計算所得前4階振型模態(tài),如圖3所示。計算結果表明:該斜拉橋的第1階自振頻率和第2階自振頻率較大且相近,并且前兩階振型均屬于橫彎振型,這表明該橋具有較大的初始剛度。另外,該橋分別在第7階和第10階振型中才出現(xiàn)彎扭耦合現(xiàn)象,這說明該橋的抗扭剛度較大,容易滿足剛度要求。
【參考文獻】:
期刊論文
[1]求解廣義特征值問題的多重Ritz向量法[J]. 黃吉鋒. 力學學報. 1999(05)
碩士論文
[1]基于框架結構的屈曲約束支撐的動力分析[D]. 任剛.合肥工業(yè)大學 2017
[2]武漢某超限高層的彈性動力特性與結構分析[D]. 阿布都熱依木江·庫爾班.武漢理工大學 2014
[3]曲線梁橋的動力分析及抗震性能研究[D]. 胡明剛.西南交通大學 2010
本文編號:3417960
【文章來源】:公路工程. 2020,45(04)北大核心
【文章頁數(shù)】:7 頁
【部分圖文】:
鋼拱塔剪力圖
為研究該斜拉橋的動力學特性以及地震動力響應問題,運用Midas/Civil2018建立主橋上部結構的有限元計算模型。該計算模型共有1 405個節(jié)點,1 420個單元,采用空間梁單元模擬主梁和橋塔,拉索采用桁架單元;橋墩與鋼拱塔采用鉸結的形式,拉索單元與主梁、鋼拱塔均采用剛性連接。該斜拉橋的有限元計算模型如圖2所示。2 主橋動力特性計算
子空間迭代法主要是通過重復運用矩陣迭代法和瑞利-李茲法來求解自由度較多結構體系的低階振型及頻率的方法。它可以有效解決頻率相等或者幾個固有頻率相差很小時收斂速度慢難點,進而能夠極大地提升計算分析的速度和精度,因此它普遍用來求解大型復雜結構的動力響應問題;谝呀⒌腗idas計算模型,利用Midas計算軟件中的特征值分析求解出該斜拉橋成橋狀態(tài)下的動力特性,算得前10階的固有頻率以及相應的主振型,并對各階振型的特點加以描述分析,具體如表1所示。另外列出計算所得前4階振型模態(tài),如圖3所示。計算結果表明:該斜拉橋的第1階自振頻率和第2階自振頻率較大且相近,并且前兩階振型均屬于橫彎振型,這表明該橋具有較大的初始剛度。另外,該橋分別在第7階和第10階振型中才出現(xiàn)彎扭耦合現(xiàn)象,這說明該橋的抗扭剛度較大,容易滿足剛度要求。
【參考文獻】:
期刊論文
[1]求解廣義特征值問題的多重Ritz向量法[J]. 黃吉鋒. 力學學報. 1999(05)
碩士論文
[1]基于框架結構的屈曲約束支撐的動力分析[D]. 任剛.合肥工業(yè)大學 2017
[2]武漢某超限高層的彈性動力特性與結構分析[D]. 阿布都熱依木江·庫爾班.武漢理工大學 2014
[3]曲線梁橋的動力分析及抗震性能研究[D]. 胡明剛.西南交通大學 2010
本文編號:3417960
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/3417960.html