受控搖擺橋墩抗震性能及建模方法研究
[Abstract]:Bridge structure is an extremely important engineering system in a national traffic infrastructure system. When earthquakes occur, it plays an irreplaceable role as an important traffic line connecting hospitals, fire fighting, transportation and so on. The earthquake damage of the bridge has serious consequences. If the bridge is closed because of earthquake damage, the ability to deal with emergencies will be greatly weakened. Even temporary closure may have great consequences. Therefore, the integrity of the bridge must be guaranteed after the earthquake, requiring that after a larger earthquake, The bridge can still be used normally, which is a problem to be solved in realizing the recoverable function after the earthquake. In this paper, the theoretical and experimental research on a new type of controlled swing pier based on performance is carried out, and some suggestions and schemes for the basic component composition, calculation model, design method and feasibility of engineering application of swing pier are put forward. Especially, the model of controlled swing pier and the structural model of computer simulation are given in detail. In the fifth chapter of this paper, the quasi-static loading of the controlled swing pier model based on SAP2000 platform is introduced, and the response of the controlled swing pier under monotonic, cyclic and seismic action is accurately predicted. The related research contents and contributions of this paper are as follows: (1) the first chapter summarizes the great influence on bridge structure caused by earthquake, and puts forward the central idea of bridge earthquake resistance in this paper. The research on the new swing pier at home and abroad and its advantages and disadvantages after the large earthquake, its superior economic efficiency, and elaborated the main research content and purpose of this paper in detail. (2) in the second chapter, the difference between the seismic design idea based on performance and the traditional design is described in detail, and the influence of the ductile coefficient on the residual deformation after the earthquake is explained according to several groups of recorded data after the earthquake. (3) in the third chapter, the basic concept, function and design composition of each part of the controlled swing pier are explained, and the development process of the controlled swing pier and the present situation of the development of the swing pier are briefly described. (4) in chapter IV, the test and test results of swing piers carried out by Taiwan Kaohsiung first University of Science and Technology [1] (2003) are analyzed. The test results of friction dampers on swing piers made by Taiwan Kaohsiung first University of Science and Technology [2] (2008) are analyzed, and the test and results of a new type of self-reset piers studied by Tsinghua University [3] (2012) are analyzed. The similarities and differences between the controlled swing pier and the traditional pier are expounded. The superior economic performance of performance-based recoverable function structure and the feasibility of practical application are explained. (5) in the fifth chapter, according to the results of this paper, the modeling method of controlled swing pier is put forward, which is modeled by SAP2000, and the cantilever frame structure is selected, and dampers are added to the structure instead of seismic energy dissipation components. The connection with bridge deck and foundation cap is represented by nonlinear spring and nonlinear inelastic spring, and the displacement component can be recovered by adding prestressed steel bar instead of controlled earthquake, and the quasi-static cyclic loading test of swing pier is carried out. The mechanical parameters of the loaded data are analyzed. (6) in the sixth chapter, the main contents of this paper are summarized, and the advantages of the controlled swing pier and the accuracy of the model are explained. the development prospect of the new seismic structure of the bridge and its recoverable function after the earthquake are prospected.
【學位授予單位】:長安大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U443.22;U442.55
【共引文獻】
相關期刊論文 前9條
1 張紀剛;禚煥雯;江志偉;;基于搖擺墻體系的新型海洋平臺振動控制研究[J];土木工程學報;2012年S2期
2 蔡小寧;孟少平;孫巍巍;;自復位預制框架邊節(jié)點抗震性能試驗研究[J];土木工程學報;2012年12期
3 杜永峰;武大洋;;一種輕型消能搖擺架近斷層地震響應減震分析[J];土木工程學報;2013年S2期
4 張紀剛;江志偉;李秋義;;剛度對海洋平臺-搖擺墻體系抗震性能的影響研究[J];土木工程學報;2013年S1期
5 杜永峰;武大洋;;基于剛度需求設計的輕型消能搖擺架減震性態(tài)分析[J];土木工程學報;2014年01期
6 宋曉輝;方國強;白潔;;東明黃河公路大橋抗震設計[J];鐵道建筑;2014年08期
7 趙桂峰;馬玉宏;陳小飛;;村鎮(zhèn)建筑基于性態(tài)標準的地震易損性分析[J];土木工程學報;2014年09期
8 惠迎新;王克海;李沖;范增昱;;海峽兩岸公路橋梁抗震設計規(guī)范比較與研究[J];世界地震工程;2014年03期
9 劉鵬;袁明;陳克堅;曾永平;;熔斷機制在搖擺橋墩連續(xù)剛構橋中的應用[J];鐵道工程學報;2014年10期
相關會議論文 前1條
1 徐佳琦;呂西林;;基于能量的框架-搖擺墻結構與框架-剪力墻結構地震反應分析對比[A];城市地下空間綜合開發(fā)技術交流會論文集[C];2013年
相關博士學位論文 前10條
1 江義;基于能量平衡的建筑結構非線性靜力方法及分災設計譜的研究[D];大連理工大學;2013年
2 劉迪;輕型消能搖擺結構體系抗震性能評估與動力可靠度分析[D];蘭州理工大學;2013年
3 劉璐;自復位防屈曲支撐結構抗震性能及設計方法[D];哈爾濱工業(yè)大學;2013年
4 張風亮;中國古建筑木結構加固及其性能研究[D];西安建筑科技大學;2013年
5 付波;板件延性系數(shù)和面向抗震設計的鋼截面分類[D];浙江大學;2014年
6 姚霄雯;基于性能的高拱壩地震易損性分析與抗震安全評估[D];浙江大學;2013年
7 王亞楠;脈沖型地震下考慮支座位移需求的減震—隔震混合控制體系抗震性能研究[D];蘭州理工大學;2014年
8 陳力波;汶川地區(qū)公路橋梁地震易損性分析研究[D];西南交通大學;2012年
9 閆曉宇;多點激勵下大跨度鋼筋混凝土橋梁地震響應振動臺陣試驗研究[D];天津大學;2013年
10 劉偉;基于損傷理論的砌體結構房屋性能化抗震設計研究[D];鄭州大學;2014年
相關碩士學位論文 前10條
1 禚煥雯;基于加強層粘滯阻尼系統(tǒng)和搖擺墻結構的海洋平臺振動控制初步研究[D];青島理工大學;2012年
2 陳軍;預制混凝土框架梁柱自復位混合接頭抗震性能研究[D];蘭州理工大學;2013年
3 武大洋;近場地震作用下輕型自復位消能搖擺剛架減震性能分析[D];蘭州理工大學;2013年
4 巨晶;頂?shù)捉卿撟詮臀讳摽蚣芙Y構體系的研究[D];西安建筑科技大學;2013年
5 劉龍;非對稱混凝土獨塔斜拉橋地震響應分析[D];長安大學;2013年
6 于旭光;鋼板深梁填充鋼框架的能量分析及損傷設計[D];長安大學;2013年
7 周來彬;高墩大跨連續(xù)剛構橋動力性能研究[D];長安大學;2013年
8 樊秋;雙柱式橋墩抗震分析與研究[D];長安大學;2013年
9 郭瑞;大跨度異形鋼拱橋的抗震分析[D];浙江工業(yè)大學;2013年
10 楊書楊;新型空腹式剛構橋與普通剛構橋的對比分析[D];華中科技大學;2013年
本文編號:2491862
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2491862.html