交通禁止標(biāo)志的檢測(cè)和識(shí)別
[Abstract]:The detection and identification system of road traffic sign is an important part of the intelligent traffic system. It provides an indication and warning information for the driver to provide reliable guarantee for safe and convenient driving. The recognition and study of traffic signs in foreign countries began in the 1980s, and the research in this field was very late in our country. In the increasingly developed road traffic system, the detection and identification of traffic signs will have a wider application, so the research on the automatic detection and recognition system of traffic signs is of great value. In this paper, the prohibition sign in traffic sign is used as the research object, and the research background, research significance, the research situation at home and abroad and the technical difficulties existing in the research are introduced. and secondly, the method for detecting a circle by adopting an improved Hough transform detection circle is introduced, a circle center coordinate is obtained and a circle radius is calculated, Then, how to remove the background of the interference from the color feature of the prohibited mark in the HSV color space is introduced, and how to carry out various morphological operations on the obtained image And finally, adopting an improved Hu constant-moment method to extract the shape-invariant moment characteristic value of the forbidden mark to be identified, calculating the similarity of the image to be identified and the template image in the sample library by using the Euclidean distance calculation method, and identifying the forbidden mark according to the similarity. The system uses the above-mentioned technology to effectively identify the forbidden mark in the practical application, and the recognition rate is 83% by testing the image in the range of 207-1024-776-776 with the 100-frame resolution, wherein the recognition rate of the 50-frame image with the resolution of 1024-776 is achieved. 96%, basically realized the expected recognition rate of 90%
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U491.52;U495
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 錢晶;高月松;;圖像檢索系統(tǒng)中的CBIR技術(shù)研究[J];電腦知識(shí)與技術(shù);2011年02期
2 王坤明,楊斐,許忠仁;基于神經(jīng)網(wǎng)絡(luò)的交通標(biāo)志識(shí)別方法[J];撫順石油學(xué)院學(xué)報(bào);2003年01期
3 李長(zhǎng)春;齊修東;雷添杰;馬蕭蕭;;基于改進(jìn)SURF算法的無(wú)人機(jī)遙感影像快速拼接[J];地理與地理信息科學(xué);2013年05期
4 嚴(yán)柏軍,鄭鏈,王克勇;基于不變矩特征匹配的快速目標(biāo)檢測(cè)算法[J];紅外技術(shù);2001年06期
5 王菁菁,范影樂(lè);基于Hough變換的圓檢測(cè)技術(shù)[J];杭州電子科技大學(xué)學(xué)報(bào);2005年04期
6 張紅民,張玉堅(jiān);基于廣義Hough變換的圓心坐標(biāo)快速提取方法[J];江漢石油學(xué)院學(xué)報(bào);2000年02期
7 孫振平,安向京,賀漢根;CITAVT-IV——視覺導(dǎo)航的自主車[J];機(jī)器人;2002年02期
8 楊斐,王坤明,馬欣,朱雙東;應(yīng)用BP神經(jīng)網(wǎng)絡(luò)分類器識(shí)別交通標(biāo)志[J];計(jì)算機(jī)工程;2003年10期
9 王玉文;胡順波;;基于高斯混合模型的有約束彩色醫(yī)學(xué)圖像群配準(zhǔn)技術(shù)[J];計(jì)算機(jī)應(yīng)用;2014年01期
本文編號(hào):2487025
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2487025.html