城市公交客流量智能識(shí)別系統(tǒng)的研究
[Abstract]:Since the reform and opening up, the national economy of our country has undergone earth-shaking changes, especially in the aspect of urban construction, urban traffic has become a key factor affecting the development of large and medium-sized cities. Nowadays, with the increasing number of cars in cities and the rapid development of urban motorization, there are many problems that hinder the development of cities, such as traffic congestion and lack of energy. Environmental pollution is becoming more and more serious and traffic accidents occur frequently. How to improve the utilization rate of urban traffic resources becomes the key to solve the above urban traffic problems. In view of the fact that urban public transport has the advantages of large passenger traffic, relatively low investment, low utilization of resources, high operational efficiency, less pollution, less per capita traffic, and so on, the development of urban public transport should be strengthened. To achieve the goal of digitalization and intelligence of urban traffic management, and to improve the efficiency of public transportation management and the level of social service become the only way to improve urban traffic. The purpose of this paper is to obtain the passenger flow data of bus passengers based on multi-sensor array pedal, analyze the changing law of bus passengers' getting on and off feet, and obtain the characteristics of the data collected by the sensors. This paper presents a criterion for judging passenger flow data based on the profile of foot, and uses the principle of human kinematics to recognize the direction of boarding and disembarking, and uses BP neural network algorithm to preprocess and intelligently recognize the original data, and calculates the number of passengers on and off bus. In this paper, the hardware design of the system and the realization of recognition software algorithm are described in detail. Finally, the algorithm is tested systematically, and the accuracy is 93%, which has strong reliability.
【學(xué)位授予單位】:中國民航大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U491.17;TP391.4;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 武根友;李江;李曉輝;;基于物聯(lián)網(wǎng)的智能公交系統(tǒng)研究[J];河北省科學(xué)院學(xué)報(bào);2011年03期
2 白子建;段緒斌;;智能公交系統(tǒng)設(shè)計(jì)方案分析研究[J];城市道橋與防洪;2011年08期
3 張娟;毛曉波;陳鐵軍;;運(yùn)動(dòng)目標(biāo)跟蹤算法研究綜述[J];計(jì)算機(jī)應(yīng)用研究;2009年12期
4 孫紅麗;;構(gòu)建BP網(wǎng)絡(luò)結(jié)構(gòu)方法及其在預(yù)測上應(yīng)用[J];河南科學(xué);2009年07期
5 鄭建湖;王明華;;動(dòng)態(tài)交通信息采集技術(shù)比較分析[J];交通標(biāo)準(zhǔn)化;2009年07期
6 常新峰;沈連豐;胡靜;夏瑋瑋;;一種智能公交車載系統(tǒng)的研制及性能分析[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
7 歐陽磊;黃友銳;黃宜慶;;基于模糊RBF神經(jīng)網(wǎng)絡(luò)的PID及其應(yīng)用[J];計(jì)算機(jī)工程;2008年22期
8 于洋;周學(xué)偉;楊青;趙亞威;;基于模糊神經(jīng)網(wǎng)絡(luò)的鍋爐系統(tǒng)故障診斷研究[J];工業(yè)儀表與自動(dòng)化裝置;2008年02期
9 杜友田;陳峰;徐文立;李永彬;;基于視覺的人的運(yùn)動(dòng)識(shí)別綜述[J];電子學(xué)報(bào);2007年01期
10 王圣男,郁梅,蔣剛毅;智能交通系統(tǒng)中基于視頻圖像處理的車輛檢測與跟蹤方法綜述[J];計(jì)算機(jī)應(yīng)用研究;2005年09期
相關(guān)碩士學(xué)位論文 前1條
1 邵媛媛;智能公交系統(tǒng)中車載終端的研究與開發(fā)[D];大連理工大學(xué);2007年
,本文編號(hào):2271373
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2271373.html