基于壓電薄膜的車型分類研究
[Abstract]:The sustained rapid growth of China's socialist economy and the continuous improvement of the people's material standard of living have led to the development of the automobile industry and the increasing purchase of cars. Owning private cars has become a very common phenomenon. On the one hand, it brings great convenience to people's daily life and promotes the further development of social economy. But on the other hand, there are a series of social problems, such as the worsening of traffic environment, the increasing traffic accident rate and the increasing congestion of urban road traffic. At the same time, under the influence of benefit driving and transportation competition, the number of overloaded and overloaded transport vehicles on the road increases year by year, and the damage to the road and other economic and social losses are shocking. On the basis of analyzing the advantages and disadvantages of the existing vehicle classification methods, the paper puts forward the scheme of this paper. The main work of this paper is as follows: (1) the vehicle recognition system based on piezoelectric film is designed in this paper. Through the reasonable laying of high sensitivity piezoelectric film shaft, the data can be measured as accurately as possible. After signal enhancement and filtering, the vehicle wheelbase, axle load, axle number, wheel number, vehicle weight and other parameters are sorted out. (2) the effect of vehicle parameters on vehicle classification is analyzed, and the useful features are selected. This paper focuses on the distribution of axle load of different vehicle models and different axle numbers. In order to strengthen the use of vehicle features as much as possible, a two-layer classifier is designed in this paper. The first layer classifier uses obvious features to classify vehicle models completely and accurately. The two-layer classifier is a fine classifier designed on the basis of analyzing the kernel function and parameter selection of support vector machine. The classifier is used for further subdivision on the basis of the accuracy of the first layer. The experiments show that the two-layer intelligent classifier designed in this paper can effectively utilize the measured data from piezoelectric film. Meanwhile, the axial load data studied in this paper play a better role in classifying the classifier.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U495;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 華莉琴;許維;王拓;馬瑞芳;胥博;;采用改進(jìn)的尺度不變特征轉(zhuǎn)換及多視角模型對(duì)車型識(shí)別[J];西安交通大學(xué)學(xué)報(bào);2013年04期
2 呂成超;劉偉銘;;基于多傳感器的一種新型車型車種分類識(shí)別系統(tǒng)[J];科學(xué)技術(shù)與工程;2011年33期
3 謝輝;董德存;歐冬秀;;基于物聯(lián)網(wǎng)的新一代智能交通[J];交通科技與經(jīng)濟(jì);2011年01期
4 郝海玲;;高分子壓電傳感器在交通監(jiān)測(cè)中的應(yīng)用[J];內(nèi)蒙古石油化工;2010年03期
5 蔡錦達(dá);張金東;孫福佳;馬天駒;;壓電電纜應(yīng)用于高速公路超速超載監(jiān)測(cè)的研究[J];自動(dòng)化技術(shù)與應(yīng)用;2009年10期
6 蘇榮球;;聚偏氟乙烯壓電薄膜的研究進(jìn)展與應(yīng)用[J];廣州廣播電視大學(xué)學(xué)報(bào);2009年03期
7 陳宏;何小海;吳煒;楊曉敏;;應(yīng)用SVM的三維車型識(shí)別技術(shù)[J];四川大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年06期
8 夏莉英;陳雁;;AT89C51單片機(jī)與PC機(jī)的通信接口及編程[J];電子工程師;2006年09期
9 艾娜,吳作偉,任江華;支持向量機(jī)與人工神經(jīng)網(wǎng)絡(luò)[J];山東理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年05期
10 杜樹新,吳鐵軍;模式識(shí)別中的支持向量機(jī)方法[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2003年05期
相關(guān)碩士學(xué)位論文 前7條
1 袁愛龍;基于視頻的汽車車型識(shí)別研究[D];電子科技大學(xué);2013年
2 唐曉虎;智能交通系統(tǒng)中車型識(shí)別技術(shù)研究[D];廣西師范大學(xué);2012年
3 朱金海;PVDF壓電薄膜及其傳感器的制備與性能研究[D];哈爾濱工業(yè)大學(xué);2011年
4 錢志偉;智能交通系統(tǒng)中車型識(shí)別的研究與應(yīng)用[D];西安電子科技大學(xué);2011年
5 馬蓓;車型識(shí)別技術(shù)在視頻監(jiān)控中的應(yīng)用[D];西安電子科技大學(xué);2010年
6 石譯雄;基于環(huán)形線圈車型識(shí)別研究[D];長沙理工大學(xué);2009年
7 徐威;基于紅外檢測(cè)和壓電傳感相結(jié)合的車型自動(dòng)分類技術(shù)研究[D];南京理工大學(xué);2004年
,本文編號(hào):2231426
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2231426.html