天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 交通工程論文 >

橋隧工程安全監(jiān)測的光纖光柵傳感理論及關(guān)鍵技術(shù)研究

發(fā)布時(shí)間:2018-09-06 08:49
【摘要】:隨著我國現(xiàn)代化建設(shè)的不斷深入,橋梁和隧道工程建設(shè)快速發(fā)展,且工程建設(shè)重點(diǎn)逐漸向復(fù)雜地區(qū)轉(zhuǎn)移,與此同時(shí)施工環(huán)境逐漸惡劣,地質(zhì)條件越發(fā)復(fù)雜,橋梁與隧道工程建設(shè)施工期與服役期的安全事故頻發(fā),并造成嚴(yán)重的人員傷亡與經(jīng)濟(jì)損失。針對(duì)災(zāi)害類型及事故特點(diǎn),研究適用于橋梁與隧道工程安全監(jiān)測的傳感理論與技術(shù),是解決橋隧工程安全難題的有效方法。光纖光柵(Fiber Bragg Grating, FBG)傳感技術(shù)以其材質(zhì)、精度、組網(wǎng)能力等優(yōu)勢,為解決該難題提供了可行的途徑,但目前橋隧工程安全監(jiān)測領(lǐng)域,植入光纖光柵的智能土工材料研究較少,傳感器件大多僅考慮普通光纖光柵軸向均勻應(yīng)變特性,器件選擇與傳感特性研究較為單一,微型化與高精度的光纖光柵傳感器研究不夠完善,不能滿足復(fù)雜環(huán)境下橋隧工程實(shí)時(shí)監(jiān)測的需要。 針對(duì)上述問題,本文以橋梁與隧道工程安全監(jiān)測為應(yīng)用背景,研究光纖光柵傳感理論與關(guān)鍵技術(shù),以橋隧工程中不同災(zāi)害類型的工程現(xiàn)場應(yīng)用及模型試驗(yàn)為依托,在分析光纖光柵軸向應(yīng)變傳感模型的基礎(chǔ)上,根據(jù)橋隧工程的應(yīng)用需求,采用有限元法優(yōu)化設(shè)計(jì)了微型化、高精度光纖光柵傳感器系列;發(fā)揮光纖光柵可植入性強(qiáng)的巨大優(yōu)勢,研究光纖光柵與土工格柵的在線復(fù)合工藝,研制了集測量與加固于一體的智能土工格柵及其二維、三維變形場傳感方法;以新型光纖光柵的傳感特性為突破口,研究了復(fù)雜空間應(yīng)力條件下啁啾、相移光纖光柵的光譜變化規(guī)律,實(shí)現(xiàn)了光纖光柵傳感器在橋隧工程現(xiàn)場及模型試驗(yàn)中應(yīng)用,最后基于支持向量回歸機(jī)對(duì)缺失數(shù)據(jù)進(jìn)行修補(bǔ),進(jìn)一步提高系統(tǒng)的智能性與可靠性。本文的主要研究工作如下: 1、根據(jù)橋隧工程某些應(yīng)用場合對(duì)小體積、多參數(shù)傳感器的需求,在分析光纖光柵傳輸理論與傳感模型的基礎(chǔ)上,基于有限元力學(xué)仿真,對(duì)多參數(shù)光纖光柵傳感器進(jìn)行優(yōu)化設(shè)計(jì),研制了高精度、微型化的光纖光柵傳感器系列,包括:應(yīng)變損失小的表貼式光纖光柵應(yīng)變傳感器、高精度的光纖光柵位移傳感器、與被測介質(zhì)匹配良好的微型光纖光柵土壓力計(jì)、適用于裂隙與管道流速實(shí)時(shí)監(jiān)測的光纖光柵流速計(jì),詳細(xì)研究了不同參數(shù)傳感器的傳感原理與性能特性,為橋隧工程安全監(jiān)測特殊場合的應(yīng)用提供有效的技術(shù)手段。 2、針對(duì)橋隧工程的智能土工材料研究的不足,以橋隧工程中用于結(jié)構(gòu)加固的土工格柵為載體,結(jié)合光纖光柵易植入、局部檢測精度高、成本低等的優(yōu)勢,通過研究光纖光柵與土工格柵的在線植入工藝,研制了集測量與加固于一體的智能土工格柵;組建基于自修復(fù)FBG傳感網(wǎng)絡(luò)的智能土工格柵傳感系統(tǒng),并開展智能土工格柵拉伸性能試驗(yàn),驗(yàn)證光纖光柵對(duì)格柵拉伸的響應(yīng)特性。在此基礎(chǔ)上重點(diǎn)研究了基于離散曲率的土工格柵變形傳感方法,實(shí)現(xiàn)了基于智能土工材料的橋隧工程中二維及三維變形場傳感,通過仿真與實(shí)驗(yàn)驗(yàn)證了其可行性,本章研究填補(bǔ)了具有空間變形場自傳感功能的橋隧工程智能型土工材料的研究空白。 3、針對(duì)均勻光纖光柵在空間復(fù)雜應(yīng)力下容易發(fā)生光譜畸變,造成無法實(shí)現(xiàn)復(fù)雜應(yīng)力的測量,且軸向應(yīng)變測量嚴(yán)重失真的難題,以啁啾光纖光柵(Chirped Fiber Bragg Grating, CFBG)與相移光纖光柵(Phase Shifted Fiber Bragg Grating, PSFBG)這兩種典型的非均勻光纖光柵空間應(yīng)力傳感特性為突破點(diǎn),通過分析啁啾、相移光纖光柵這兩種新型光纖光柵傳感器件的空間“力—光”特性,研究其在軸向均勻與非均勻受力、不同大小徑向力、不同徑向力分布角度等復(fù)雜空間應(yīng)力下光譜形狀、中心波長、帶寬、反射率等光譜信息的響應(yīng)規(guī)律,獲取了基于非均勻光纖光柵的復(fù)雜空間應(yīng)力測量方法,并拓寬了新型光纖光柵器件的應(yīng)用領(lǐng)域。 4、針對(duì)橋梁與隧道工程中傳統(tǒng)傳感方式監(jiān)測精度低、匹配性差的缺陷,組建了基于高精度與微型化光纖光柵傳感器系列的光纖光柵傳感系統(tǒng),并應(yīng)用于橋梁與隧道工程現(xiàn)場及模型試驗(yàn)中。針對(duì)橋梁與隧道工程中不同的事故類型與應(yīng)用場合,分別對(duì)隧道支護(hù)變形、橋梁節(jié)段接縫位移、動(dòng)水注漿裂隙流場流速、海底隧道圍巖壓力等不同物理參數(shù)進(jìn)行實(shí)時(shí)監(jiān)測,分析這些監(jiān)測參數(shù)對(duì)隧道變形、橋梁下?lián)、突水等?zāi)害治理、圍巖應(yīng)力釋放等過程的響應(yīng)規(guī)律,驗(yàn)證系統(tǒng)中光纖光柵傳感器系列的實(shí)用效果。 5、針對(duì)監(jiān)測過程中的光纖光柵傳感系統(tǒng)由于光譜畸變或傳感器損壞可能造成關(guān)鍵點(diǎn)數(shù)據(jù)突然缺失的問題,研究基于支持向量機(jī)(Support Vector Machine,SVM)的缺失數(shù)據(jù)修補(bǔ)方法,首先根據(jù)其他傳感器及影響因素與待修補(bǔ)傳感器的相關(guān)性,建立數(shù)據(jù)缺失前待修補(bǔ)傳感器數(shù)據(jù)與各影響因素的非線性函數(shù)關(guān)系模型,隨后,根據(jù)該模型以其他傳感器及影響因素為測試集輸入,計(jì)算待修補(bǔ)傳感器的缺失數(shù)據(jù),實(shí)現(xiàn)對(duì)改點(diǎn)缺失數(shù)據(jù)的估計(jì)與修補(bǔ),進(jìn)一步提高安全監(jiān)測中光纖光柵傳感系統(tǒng)的智能性與可靠性。
[Abstract]:With the deepening of China's modernization drive, the construction of bridges and tunnels has developed rapidly, and the focus of construction has gradually shifted to complex areas. At the same time, the construction environment is becoming worse and the geological conditions are becoming more complex. The safety accidents of bridges and tunnels during the construction and service periods are frequent, which cause serious casualties and injuries. Economic loss. In view of disaster types and accident characteristics, the study of sensing theory and technology suitable for bridge and tunnel engineering safety monitoring is an effective method to solve the safety problems of bridge and tunnel engineering. However, in the field of bridge and tunnel engineering safety monitoring, there is little research on Intelligent geomaterials embedded with fiber grating. Most sensors only consider the axial uniform strain characteristics of ordinary fiber grating. The research on device selection and sensing characteristics is relatively single, and the research on miniaturization and high precision fiber grating sensors is not perfect enough to meet the complexity. The need for real-time monitoring of bridge and tunnel projects in the environment.
In view of the above problems, this paper takes the bridge and tunnel engineering safety monitoring as the application background, studies the fiber grating sensing theory and the key technology, relies on the field application and the model test of different disaster types in the bridge and tunnel engineering, analyzes the fiber grating axial strain sensing model, according to the application requirements of the bridge and tunnel engineering. A series of miniaturized and high-precision FBG sensors are optimized by using finite element method, and the on-line composite technology of FBG and geogrid is studied by taking advantage of the strong implantability of FBG. The sensing characteristic of FBG is a breakthrough. The spectrum variation of chirped and phase-shifted FBG under complex spatial stress is studied. The application of FBG sensor in bridge and tunnel engineering field and model test is realized. Finally, the missing data is repaired based on support vector regression machine to further improve the intelligence and reliability of the system. The main research work in this paper is as follows:
1. According to the requirement of small volume and multi-parameter sensors in some applications of bridge and tunnel engineering, based on the analysis of the transmission theory and sensing model of FBG, the multi-parameter FBG sensors are optimized and designed based on the finite element mechanical simulation. A series of high precision and miniaturized FBG sensors are developed, including strain loss. A small surface mounted fiber grating strain sensor, a high precision fiber grating displacement sensor, and a micro fiber grating earth pressure meter well matched with the measured medium are used for real-time monitoring of the flow velocity of cracks and pipelines. The sensing principle and performance characteristics of different parameter sensors are studied in detail to ensure the safety of bridge and tunnel engineering. It provides effective technical means for monitoring the application of special occasions.
2. Aiming at the deficiency of the research on Intelligent geotechnical materials for bridge and tunnel engineering, taking the geogrid used for structural reinforcement as the carrier, combining the advantages of easy implantation of fiber grating, high local detection accuracy and low cost, an intelligent soil integrating measurement and reinforcement was developed by studying the on-line implantation technology of fiber grating and geogrid. An intelligent geogrid sensing system based on self-repairing FBG sensor network is established, and the tensile performance test of the intelligent geogrid is carried out to verify the response characteristics of the fiber grating to the grid tension. The feasibility of two-dimensional and three-dimensional deformation field sensing in tunnel engineering is verified by simulation and experiment. The research in this chapter fills the blank of intelligent geomaterials for bridge and tunnel engineering with spatial deformation field self-sensing function.
3. To solve the problem that uniform fiber Bragg gratings are prone to spectral distortion under complex spatial stress, which makes it impossible to measure complex stress and seriously distorts axial strain measurement, chirped fiber Bragg Grating (CFBG) and phase-shifted fiber Bragg Grating (PSFBG) are two typical nonlinearities. The spatial stress sensing characteristic of uniform fiber grating is the breakthrough point. By analyzing the spatial "force-light" characteristics of chirp and phase-shifted fiber grating, the spectral shape and center of these two new types of fiber grating sensors under axial uniform and inhomogeneous forces, different radial forces and different radial force distribution angles are studied. The complex spatial stress measurement method based on non-uniform fiber grating (FBG) is obtained by the response law of spectral information such as wavelength, bandwidth and reflectivity, and the application fields of new FBG devices are broadened.
4. To overcome the shortcomings of low precision and poor matching of traditional sensing methods in bridge and tunnel engineering, a series of fiber grating sensing systems based on high precision and miniaturization fiber grating sensors are established and applied to bridge and tunnel engineering site and model test. On occasions, real-time monitoring of different physical parameters such as tunnel support deformation, bridge segment joint displacement, flow velocity of dynamic water grouting fissure flow field, pressure of surrounding rock of submarine tunnel is carried out respectively. The response law of these monitoring parameters to tunnel deformation, bridge deflection, water inrush and stress release of surrounding rock is analyzed, and the fiber optic light in the system is verified. Practical effect of grating sensor series.
5. Aiming at the problem of sudden missing of key data due to spectral distortion or sensor damage in FBG sensing system during monitoring process, a method of repairing missing data based on Support Vector Machine (SVM) is studied. Firstly, according to the correlation between other sensors and influencing factors and the sensor to be repaired, the method is established. A non-linear functional relationship model between the sensor data to be repaired and the influencing factors before data loss is established. Then, the missing data of the sensor to be repaired is calculated based on the model with other sensors and influencing factors as the test set input. The missing data of the sensor to be repaired is estimated and repaired to further improve the fiber grating sensing in safety monitoring. The intelligence and reliability of the system.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:U446;U456.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李庶林;;試論微震監(jiān)測技術(shù)在地下工程中的應(yīng)用[J];地下空間與工程學(xué)報(bào);2009年01期

2 石志龍;徐超;;亞婆髻隧道施工監(jiān)控量測與穩(wěn)定分析[J];地下空間與工程學(xué)報(bào);2010年03期

3 楊淑連;申晉;李田澤;;基于雙光纖布拉格光柵的流速傳感器[J];半導(dǎo)體光電;2009年05期

4 張家坤,弓俊青,岳清瑞,佟曉利,姚謙峰;光纖光柵傳感技術(shù)在土木工程結(jié)構(gòu)監(jiān)測中的應(yīng)用[J];北方交通大學(xué)學(xué)報(bào);2003年05期

5 喻言,李宏偉,歐進(jìn)萍;結(jié)構(gòu)監(jiān)測的無線加速度傳感器設(shè)計(jì)與制作[J];傳感技術(shù)學(xué)報(bào);2004年03期

6 葉偉松;袁慎芳;;無線傳感網(wǎng)絡(luò)在結(jié)構(gòu)健康監(jiān)測中的應(yīng)用[J];傳感技術(shù)學(xué)報(bào);2006年03期

7 胡玉瑞;唐源宏;李川;;光纖Bragg光柵流量傳感器[J];傳感技術(shù)學(xué)報(bào);2010年04期

8 何大學(xué);胡世強(qiáng);;大跨徑PC連續(xù)剛構(gòu)橋跨中下?lián)显蚍治黾胺乐未胧┨接慬J];城市道橋與防洪;2012年04期

9 李宏男,李東升,趙柏東;光纖健康監(jiān)測方法在土木工程中的研究與應(yīng)用進(jìn)展[J];地震工程與工程振動(dòng);2002年06期

10 裴強(qiáng),郭迅,張敏政;橋梁健康監(jiān)測及診斷研究綜述[J];地震工程與工程振動(dòng);2003年02期

相關(guān)博士學(xué)位論文 前3條

1 王榮霞;節(jié)段接縫剪切變形及其在樁—土—橋梁體系中的影響效應(yīng)研究[D];天津大學(xué);2009年

2 沈小燕;光纖光柵應(yīng)變傳感及擴(kuò)大應(yīng)變傳感范圍的技術(shù)研究[D];天津大學(xué);2010年

3 王曉霞;熱固性樹脂基復(fù)合材料的固化變形數(shù)值模擬[D];山東大學(xué);2012年

相關(guān)碩士學(xué)位論文 前2條

1 簡多;光子晶體光纖特性分析與優(yōu)化設(shè)計(jì)[D];重慶大學(xué);2013年

2 劉夢(mèng)微;基于GPS的橋梁變形監(jiān)測應(yīng)用研究[D];東華理工大學(xué);2013年

,

本文編號(hào):2225832

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2225832.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e89f6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com