基于模糊視覺技術(shù)的車輛監(jiān)控系統(tǒng)設(shè)計(jì)
發(fā)布時間:2018-06-03 23:28
本文選題:模糊視覺 + 大型車輛; 參考:《計(jì)算機(jī)測量與控制》2014年09期
【摘要】:當(dāng)前的車輛監(jiān)測系統(tǒng)進(jìn)行大型車輛監(jiān)控的過程中,容易受到環(huán)境不可控因素的影響,造成監(jiān)控過程形式單一,對車輛細(xì)節(jié)識別準(zhǔn)確度較低;提出基于模糊視覺技術(shù)的大型車輛監(jiān)控系統(tǒng)設(shè)計(jì)方法;系統(tǒng)由硬件和軟件這兩部分構(gòu)成;硬件部分以FPGA為控制核心進(jìn)行了設(shè)計(jì),重點(diǎn)對交通圖像的采集模塊、緩存模塊、攝像機(jī)方案、監(jiān)視器方案和嵌入式處理器方案進(jìn)行闡述;軟件部分首先對圖像進(jìn)行預(yù)處理消除圖像中的噪聲.引入車輛細(xì)節(jié)模糊視覺特征識別模型表示外界隨機(jī)因素的干擾,根據(jù)模型的輸出結(jié)果計(jì)算車輛細(xì)節(jié)特征的像素密度,能夠?qū)囕v的細(xì)節(jié)狀態(tài)進(jìn)行準(zhǔn)確識別;實(shí)驗(yàn)結(jié)果表明,利用設(shè)計(jì)的監(jiān)控系統(tǒng)對大型車輛進(jìn)行監(jiān)控,能夠有效提高監(jiān)控的準(zhǔn)確率,具有較強(qiáng)的穩(wěn)定性。
[Abstract]:The current vehicle monitoring system is easy to be affected by uncontrollable environmental factors in the process of large-scale vehicle monitoring, resulting in a single form of monitoring process and low accuracy of vehicle detail recognition. The design method of large vehicle monitoring system based on fuzzy vision technology is put forward. The system is composed of hardware and software. The hardware part is designed with FPGA as the control core, especially the traffic image acquisition module and buffer module. The camera scheme, monitor scheme and embedded processor scheme are described. Firstly, the image is preprocessed to eliminate the noise in the image. The fuzzy visual feature recognition model of vehicle details is introduced to represent the interference of external random factors. The pixel density of vehicle detail features can be calculated according to the output results of the model, which can accurately identify the details of vehicles. The experimental results show that, Using the designed monitoring system to monitor large vehicles can effectively improve the accuracy of monitoring and has strong stability.
【作者單位】: 青島酒店管理職業(yè)技術(shù)學(xué)院;
【分類號】:TP391.41;U495
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 覃永新;陳文輝;章帆;;實(shí)時視頻數(shù)據(jù)采集的FPGA實(shí)現(xiàn)[J];電子技術(shù)應(yīng)用;2009年09期
2 朱立新;王平安;夏德深;;基于梯度場均衡化的圖像對比度增強(qiáng)[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報;2007年12期
3 王瑩;南敬昌;郭凌云;;基于視頻圖像的車牌定位預(yù)處理算法[J];計(jì)算機(jī)測量與控制;2011年10期
4 潘兵,謝惠民,續(xù)伯欽,戴福隆;數(shù)字圖像相關(guān)中的亞像素位移定位算法進(jìn)展[J];力學(xué)進(jìn)展;2005年03期
5 李U,
本文編號:1974720
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1974720.html
最近更新
教材專著