天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 交通工程論文 >

大坳隧道隧址區(qū)滲流場與隧道涌水量數(shù)值模擬及預(yù)測

發(fā)布時(shí)間:2018-06-02 23:52

  本文選題:大坳隧道 + 地下水滲流場 ; 參考:《成都理工大學(xué)》2014年碩士論文


【摘要】:隧道大流量涌水往往會(huì)造成比較嚴(yán)重的后果,它不僅影響隧道的正常施工,且會(huì)波及隧道建成后的安全運(yùn)營。大坳隧道隧址區(qū)為典型的高山峽谷地貌,區(qū)內(nèi)崇峰疊嶂,河谷深切,峭壁陡立。巖溶區(qū)隧道的涌水量預(yù)測一直是隧道開挖和運(yùn)營過程中要解決的難題,準(zhǔn)確預(yù)測隧道的涌水量對隧道開挖過程中人員及設(shè)備安全有極其重要的作用。 為了揭示修建大坳隧道對該隧址區(qū)地下水環(huán)境造成什么影響、以及地下水環(huán)境的變化對隧道涌水有何影響,本文主要開展了以下研究工作: (1)對隧址區(qū)地質(zhì)條件與水文地質(zhì)條件進(jìn)行調(diào)查分析;(2)建立水文地質(zhì)概念模型;(3)采用數(shù)值模擬等方法,建立隧址區(qū)地下水滲流三維數(shù)值計(jì)算模型;(4)設(shè)計(jì)下列三維數(shù)值模擬方案,對該隧址區(qū)地下水滲流場進(jìn)行三維數(shù)值計(jì)算研究:①天然狀態(tài)下地下水滲流場模擬,②隧道開挖后完全排水條件下的地下水滲流場模擬,③隧道開挖后完全排水條件下涌水量模擬預(yù)測,并采用理論計(jì)算方法研究隧道涌水量,通過對比分析數(shù)值模擬與理論計(jì)算結(jié)果,綜合得出隧道的涌水量;④隧道完全封堵條件下的地下水滲流場恢復(fù)情況模擬。 本文取得的主要成果如下: (1)隧址區(qū)巖性為灰?guī)r、砂巖為主。隧道進(jìn)口段上部覆蓋砂巖、砂質(zhì)頁巖,為典型的覆蓋型巖溶區(qū),出口段為巖溶發(fā)育的清虛洞組灰?guī)r的裸露型巖溶區(qū)。隧址區(qū)內(nèi)主要強(qiáng)富水巖組為寒武系清虛洞組灰?guī)r,主要中等至弱富水巖組為寒武系下統(tǒng)金頂山組白云質(zhì)灰?guī)r和砂巖,相對隔水層為寒武系下統(tǒng)金頂山組砂質(zhì)頁巖。 (2)采用電阻率法,探討了巖土滲透性與巖體完整性特征,隧道在垂直和水平方向電阻率有很大差異,特別是水平方向,隧道進(jìn)口段電阻率較高,說明進(jìn)口段巖性較完整,孔隙度較小,富水性較弱;隧道出口段電阻率低,說明出口段巖性破碎,巖溶裂隙發(fā)育,富水性強(qiáng)。采用電阻率方法,對隧道的涌水情況作出了定性分析。 (3)分析了隧址區(qū)水文地質(zhì)條件,概化出了與本區(qū)水文地質(zhì)條件相符的水文地質(zhì)概念模型,確定了隧址區(qū)地下水滲流模型邊界條件,并進(jìn)行了模型的時(shí)間和空間離散,建立了大坳隧道隧址區(qū)天然滲流場的三維數(shù)值模型,通過水均衡擬合和觀測水位的擬合,證明了三維數(shù)值模型的可信度。 (4)隧道完全排水在隧道周圍形成與隧道平行的線狀降落漏斗,同時(shí)在1個(gè)水文年內(nèi)因降水量周期性變化還具有周期性,在夏季降雨量大的時(shí)候,出口段降深減小,可能導(dǎo)致出口段涌水量較大。從隧道進(jìn)出口處的滲流場變化來看,滲流場在隧道出口段的變化比進(jìn)口段大得多。從排水90天開始,隧道進(jìn)口處的最大降深基本保持不變,進(jìn)口處水位最大降深5m左右,原因可能是隧道進(jìn)口段上覆砂巖及砂質(zhì)頁巖,滲透系數(shù)小,且埋深不大,位于地形順坡處,涌水量不大;隧道中部由于地下水埋深較大,隧道通過地段水位較高,隧道排水對地下水的影響最大;隧道出口段巖溶較發(fā)育,滲透系數(shù)大,地下水與降雨關(guān)系密切,隧道排水對周圍地下水滲流場影響范圍較廣。 (5)封堵90天后,滲流場恢復(fù)明顯,隧道中部線性降落漏斗開始消失,隧道進(jìn)口處與天然水位只相差約2m,出口處與天然水位相差約l0m,隧道中部相差約30m;封堵180天,隧道出口段滲流場迅速恢復(fù),而隧道進(jìn)口段則恢復(fù)較緩慢,隧道中部進(jìn)口段降深約20m。封堵270天后,大部份區(qū)域基本恢復(fù)到天然狀態(tài)的80%。封堵1年后,滲流場基本恢復(fù)到初始狀態(tài)。總體來看,隧道出口段滲流場恢復(fù)較快,進(jìn)口段恢復(fù)較慢。這是因?yàn)樗碇穮^(qū)雖處巖溶區(qū),但是進(jìn)口段屬于覆蓋型巖溶區(qū),巖溶發(fā)育程度不高,地下水循環(huán)較弱,難以得到迅速補(bǔ)給,所以進(jìn)口段滲流場恢復(fù)較緩慢。而出口段巖溶發(fā)育,地下水循環(huán)迅速,滲流場恢復(fù)快。 (6)用數(shù)值模擬方法,對已分段的大坳隧道進(jìn)行分段涌水量計(jì)算,并用理論計(jì)算方法(降雨入滲法、解析法、比擬法等)對隧道涌水量進(jìn)行了計(jì)算,獲得大坳隧道進(jìn)出口分段涌水量的范圍值,即:K97+860-K98+420為117.60~205.07m3/d;K98+420-K98+765為674.82~846.08m3/d。研究成果為該隧道的設(shè)計(jì)與施工提供了依據(jù)。
[Abstract]:The large flow of water in the tunnel often causes serious consequences. It not only affects the normal construction of the tunnel, but also affects the safe operation of the tunnel. The tunnel site area of the Da Ao tunnel is a typical mountain and Canyon landform. The peak is high in the area, the valley is deep and the cliff is steep. The prediction of the water inflow of the tunnel in the karst area is always the tunnel excavation and operation. In order to solve the difficult problem in the process, accurately predicting the water gushing quantity of the tunnel is very important for the safety of the personnel and equipment in the process of tunnel excavation.
In order to reveal the influence of the construction of the Da Ao tunnel on the groundwater environment in the tunnel site and the influence of the change of the groundwater environment on the water gushing of the tunnel, the following research work is carried out in this paper.
(1) to investigate and analyze the geological conditions and hydrogeological conditions of the tunnel site; (2) to establish the conceptual model of hydrogeology; (3) to establish a three-dimensional numerical calculation model of groundwater seepage in the tunnel site by means of numerical simulation, and (4) to design the following three-dimensional numerical simulation scheme for the three-dimensional numerical calculation of the groundwater seepage field in the tunnel site: (1) simulation of groundwater seepage field under natural condition, (2) simulation of groundwater seepage field under complete drainage condition after tunnel excavation, (3) simulation and prediction of water inflow under complete drainage condition after tunnel excavation, and the theoretical calculation method is used to study the water inflow of tunnel. Through comparison and analysis of numerical simulation and theoretical calculation, the water gushing of tunnel is synthetically obtained. The simulation of groundwater seepage field recovery under the condition of complete plugging.
The main achievements of this paper are as follows:
(1) the lithology of the tunnel site is limestone and sandstone mainly. The upper part of the tunnel entrance section covers sandstone and sand shale, which is a typical covered karst area. The exit section is the bare karst area of Qingxu cave limestone in karst development. The main strong water rich rock group in the tunnel site is the limestone of the Qingxu cave formation in the Cambrian system, and the main middle to weak rich water rich rock group is the lower Cambrian system. The dolomitic limestone and sandstone of the Jinding mountain group are relatively sandy aquifers of the Jinding formation in the lower Cambrian.
(2) the resistivity method is used to discuss the permeability of rock and rock and the characteristics of rock integrity. The resistivity of tunnel in vertical and horizontal direction is very different, especially in the horizontal direction. The resistivity of the inlet section of the tunnel is high, which indicates that the inlet section is relatively complete, the porosity is small, the water rich is weak, and the resistivity of the tunnel exit section is low, indicating the lithology broken in the exit section. The karst fracture develops and the water is strong. A qualitative analysis is made of the water gushing condition of the tunnel by means of resistivity method.
(3) the hydrogeological conditions of the tunnel site are analyzed, and the hydrogeological conceptual model which is consistent with the hydrogeological conditions in this area is generalized. The boundary conditions of the groundwater seepage model in the tunnel site are determined, and the time and space discretization of the model is carried out. The three-dimensional numerical model of the sky natural seepage flow field in the Great Depression tunnel is established, and the water equilibrium is fitted and fitted by the water balance. Fitting the observed water level proves the credibility of the three-dimensional numerical model.
(4) the tunnel is fully drained around the tunnel to form a linear landing funnel parallel to the tunnel. At the same time, in the 1 hydrological years, the periodic variation of the precipitation is periodic. When the rainfall is large in the summer, the depth of the exit section decreases, which may lead to a large flow of water in the exit section. The variation of the tunnel exit section is much larger than that of the inlet section. From 90 days of drainage, the maximum depth of the inlet of the tunnel remains unchanged, and the maximum depth of the inlet water level is about 5m. The reason may be that the tunnel inlet section is covered with sandstone and sand shale, and the permeability coefficient is small, and the depth is not large. The water inflow is small, and the middle part of the tunnel is located in the middle of the tunnel. The underground water depth is larger, the water level in the tunnel through the tunnel is higher and the tunnel drainage has the greatest influence on the groundwater; the tunnel exit Duan Yanrong is more developed, the permeability coefficient is large, the groundwater is closely related to the rainfall, and the tunnel drainage has a wide influence on the surrounding groundwater seepage field.
(5) after 90 days, the seepage field is restored obviously, the linear landing funnel in the middle of the tunnel begins to disappear, the inlet of the tunnel is only about 2m, the difference about the natural water level is about l0m, the difference about the middle part of the tunnel is about 30m, and the seepage field of the tunnel exit section is quickly restored for 180 days, while the entrance section of the tunnel is slowly restored and the entrance of the tunnel is imported. After 270 days of depth reduction for 270 days, the seepage field is basically restored to the initial state after 1 years of recovery of most of the region to the natural state of 80%. plugging. In general, the seepage field of the tunnel exit section is faster and the entrance section is slower. This is because the tunnel site is located in the karst area, but the entrance section is covered by the karst area and the degree of karst development. Not high, the groundwater circulation is weak, it is difficult to get the rapid recharge, so the seepage field of the inlet section is slowly restored, and the karst development of the exit section, the rapid circulation of the groundwater and the rapid recovery of the seepage field.
(6) the numerical simulation method is used to calculate the water gushing amount of the segmented big depression tunnel, and the water inflow of the tunnel is calculated by the theoretical calculation method (rainfall infiltration method, analytic method, analogy method, etc.). The range of the water inflow of the great deao tunnel is obtained, that is, K97+860-K98+420 is 117.60 to 205.07m3/d, and K98+420-K98+765 is 67. The research results from 4.82 to 846.08m3/d. provide a basis for the design and construction of the tunnel.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U452.11

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張美靜;萬力;王芳;王旭升;胡伏生;;隔水邊界附近圍巖滲透性變化時(shí)隧道涌水的滲流模型[J];長江科學(xué)院院報(bào);2008年05期

2 李德;李德武;王釬;;永壽梁隧道滲流場分析[J];鐵道科學(xué)與工程學(xué)報(bào);2011年04期

3 魏文清;馬長明;魏文炳;;地下水?dāng)?shù)值模擬的建模方法及應(yīng)用[J];東北水利水電;2006年03期

4 于青春,大西有三;巖體三維不連續(xù)裂隙網(wǎng)絡(luò)及其逆建模方法[J];地球科學(xué);2003年05期

5 朱學(xué)愚,劉建立;山東淄博市大武水源地裂隙巖溶水中污染物運(yùn)移的數(shù)值研究[J];地學(xué)前緣;2001年01期

6 郭曉東;田輝;張梅桂;朱威;崔健;;我國地下水?dāng)?shù)值模擬軟件應(yīng)用進(jìn)展[J];地下水;2010年04期

7 朱大力,李秋楓;預(yù)測隧道涌水量的方法[J];工程勘察;2000年04期

8 李宏卿;吳瓊;李宏罡;李緒謙;;Visual Modflow在地下水資源評(píng)價(jià)中的應(yīng)用[J];工程勘察;2005年03期

9 鄧百洪,方建勤;隧道涌水預(yù)測方法的研究[J];公路交通技術(shù);2005年03期

10 薛禹群;;中國地下水?dāng)?shù)值模擬的現(xiàn)狀與展望[J];高校地質(zhì)學(xué)報(bào);2010年01期

相關(guān)博士學(xué)位論文 前3條

1 王遇國;巖溶隧道突水災(zāi)害與防治研究[D];中國鐵道科學(xué)研究院;2010年

2 李利平;高風(fēng)險(xiǎn)巖溶隧道突水災(zāi)變演化機(jī)理及其應(yīng)用研究[D];山東大學(xué);2009年

3 王國斌;滬蓉西高速公路烏池壩巖溶隧道涌水成災(zāi)機(jī)理研究[D];中國地質(zhì)大學(xué);2012年



本文編號(hào):1970659

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1970659.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9f9a6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com