鋼橋塔典型開(kāi)孔板的力學(xué)性能及補(bǔ)強(qiáng)方法
本文選題:鋼橋塔 + 開(kāi)孔板。 參考:《上海交通大學(xué)》2014年碩士論文
【摘要】:鋼橋塔在橋梁工程中應(yīng)用越來(lái)越廣泛,但由于構(gòu)造、施工、檢修、維護(hù)等需要,不可避免對(duì)其中某些受力板件進(jìn)行開(kāi)孔。鋼板開(kāi)孔將對(duì)其力學(xué)性能產(chǎn)生不可忽略的影響,必要時(shí)需要采取措施對(duì)板件進(jìn)行補(bǔ)強(qiáng)。但是,已有研究對(duì)于鋼橋塔開(kāi)孔板件力學(xué)性能及其補(bǔ)強(qiáng)設(shè)計(jì)方法的可借鑒成果卻非常少。 本文針對(duì)鋼橋塔中典型的長(zhǎng)圓形通行孔和連續(xù)橢圓形過(guò)索孔,在以試驗(yàn)結(jié)果為驗(yàn)證的基礎(chǔ)上,采取解析推導(dǎo)和有限元分析相結(jié)合,對(duì)兩類典型開(kāi)孔板件的應(yīng)力集中系數(shù)和受壓極限荷載進(jìn)行研究,并進(jìn)一步圍繞孔洞補(bǔ)強(qiáng)方法進(jìn)行對(duì)比分析。主要研究工作和結(jié)論如下: (1)查閱國(guó)內(nèi)外相關(guān)文獻(xiàn),介紹鋼橋塔的技術(shù)發(fā)展和典型開(kāi)孔問(wèn)題。總結(jié)國(guó)內(nèi)外研究現(xiàn)狀,并提出亟待解決的問(wèn)題。 (2)簡(jiǎn)述兩類典型開(kāi)孔板件的受壓試驗(yàn),并對(duì)有限元分析方法進(jìn)行介紹。通過(guò)對(duì)比試驗(yàn)數(shù)據(jù)和有限元結(jié)果,驗(yàn)證有限元模型的準(zhǔn)確性。 (3)采用彈性力學(xué)方法和數(shù)值計(jì)算方法對(duì)開(kāi)長(zhǎng)圓孔和開(kāi)任意多個(gè)橢圓孔無(wú)限大平面的孔邊應(yīng)力集中系數(shù)進(jìn)行了解析推導(dǎo),算例分析結(jié)果與有限元解吻合良好;進(jìn)一步基于有限元數(shù)值分析對(duì)有限大板幾何參數(shù)的影響進(jìn)行研究,發(fā)現(xiàn)當(dāng)板件長(zhǎng)寬比大于某一臨界值時(shí),孔邊應(yīng)力基本不受其影響,但SCF值隨開(kāi)孔率的增大而始終呈現(xiàn)非線性增長(zhǎng)趨勢(shì)。通過(guò)在無(wú)限大平面計(jì)算結(jié)果的基礎(chǔ)上引入板寬修正系數(shù),擬合得到了兩類有限大開(kāi)孔板的SCF計(jì)算公式,可用于實(shí)際工程中的應(yīng)力集中評(píng)估。 (4)介紹開(kāi)方孔板件極限荷載的解析求法,并結(jié)合算例分析其適用性。將長(zhǎng)圓孔和橢圓孔等效成矩形孔,對(duì)兩類開(kāi)孔板件的彈塑性受壓極限強(qiáng)度進(jìn)行了解析推導(dǎo),并討論了該方法對(duì)鋼橋塔開(kāi)孔板的適用性。通過(guò)與有限元結(jié)果比較,確定了開(kāi)長(zhǎng)圓孔板和開(kāi)橢圓孔板的合理塑性鉸線位置,并針對(duì)長(zhǎng)寬比較大的板件提出了等效長(zhǎng)寬比及其取值公式。 (5)基于有限元分析,開(kāi)展補(bǔ)強(qiáng)肋幾何參數(shù)對(duì)補(bǔ)強(qiáng)后開(kāi)孔板受壓極限強(qiáng)度的影響分析,并引入極限強(qiáng)度提高系數(shù)來(lái)表征和量化補(bǔ)強(qiáng)效果。在補(bǔ)強(qiáng)肋高厚比固定的情況下,隨著補(bǔ)強(qiáng)肋厚度不斷增大,極限強(qiáng)度提高系數(shù)與補(bǔ)強(qiáng)肋厚度基本呈線性關(guān)系,但當(dāng)補(bǔ)強(qiáng)肋厚度增大至某一值之后,極限強(qiáng)度提高系數(shù)則不再隨補(bǔ)強(qiáng)肋厚度增大而提高。最終通過(guò)數(shù)值擬合,,提出了補(bǔ)強(qiáng)開(kāi)孔板極限強(qiáng)度提高系數(shù)的計(jì)算公式,可用于實(shí)際工程中的開(kāi)孔板補(bǔ)強(qiáng)設(shè)計(jì)。 (6)對(duì)本論文的研究成果和所得結(jié)論進(jìn)行總結(jié),并對(duì)進(jìn)一步研究?jī)?nèi)容提出展望。
[Abstract]:Steel bridge towers are more and more widely used in bridge engineering, but due to the need of structure, construction, overhaul and maintenance, it is inevitable to open some of them. The open hole of steel plate will have an important effect on the mechanical properties of steel plate. If necessary, measures should be taken to strengthen the plate. However, few studies have been done on the mechanical properties and reinforcement design of steel bridge tower. In this paper, based on the test results, the typical oblong circular passage holes and continuous elliptical cable passing holes in the steel bridge tower are combined with analytical derivation and finite element analysis. The stress concentration factor and compressive limit load of two kinds of typical perforated plates are studied, and the comparative analysis is carried out around the reinforcement method of holes. The main research and conclusions are as follows: The technical development and typical hole opening of steel bridge tower are introduced by consulting relevant documents at home and abroad. The present situation of domestic and international research is summarized, and the problems to be solved are put forward. The compression test of two kinds of typical perforated plate is briefly described, and the finite element analysis method is introduced. The accuracy of the finite element model is verified by comparing the experimental data with the finite element results. 3) the stress concentration factors of the infinite plane with long circular holes and any number of elliptical holes are analytically deduced by means of elastic mechanics method and numerical method. The results of the numerical examples are in good agreement with the finite element solution. The effect of finite element numerical analysis on the geometric parameters of finite plate is further studied. It is found that when the aspect ratio of plate is greater than a certain critical value, the hole edge stress is almost unaffected by the finite element method. However, with the increase of the open porosity, the SCF value always shows a nonlinear growth trend. By introducing the plate width correction coefficient on the basis of the results of infinite plane calculation, the SCF formulas for two kinds of finite perforated plates are obtained, which can be used to evaluate the stress concentration in practical engineering. In this paper, the analytical method of ultimate load of plate with square hole is introduced, and its applicability is analyzed with an example. The long circular and elliptical holes are equivalent to rectangular holes, and the ultimate strength of elastic-plastic compression of two kinds of perforated plates is derived, and the applicability of this method to the perforated plates of steel bridge tower is discussed. By comparing with the results of finite element method, the reasonable position of plastic hinges for long circular and elliptical perforated plates is determined, and the equivalent aspect ratio and its value formula are put forward for the plates with large length and width. 5) based on the finite element analysis, the influence of geometric parameters of reinforced ribs on the compressive ultimate strength of perforated plates after reinforcement is analyzed, and the enhancement coefficient of ultimate strength is introduced to characterize and quantify the reinforcement effect. When the ratio of reinforcement rib height to thickness is fixed, with the increasing of reinforcement rib thickness, the coefficient of ultimate strength improvement is basically linear with the reinforcement rib thickness, but when the reinforcement rib thickness increases to a certain value, The increasing coefficient of ultimate strength no longer increases with the thickness of reinforcing rib. Finally, through numerical fitting, a formula for calculating the increasing coefficient of the ultimate strength of reinforced perforated plate is proposed, which can be used in the reinforcement design of the perforated plate in practical engineering. 6) summarize the research results and conclusions of this paper, and put forward the prospect of further research.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U441;U443.38
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;圓柱殼開(kāi)孔問(wèn)題──單圓孔基本解[J];大連工學(xué)院學(xué)刊;1965年Z1期
2 潘際炎;大跨度鋼橋[J];鋼結(jié)構(gòu);2000年02期
3 劉殿魁,宋天舒;圓柱殼大開(kāi)孔問(wèn)題——單圓孔的理論解[J];固體力學(xué)學(xué)報(bào);1998年03期
4 楊麗紅,何蘊(yùn)增;無(wú)限平面矩形開(kāi)孔的應(yīng)力場(chǎng)分析[J];哈爾濱工程大學(xué)學(xué)報(bào);2002年02期
5 任慧龍,娜日薩,宋競(jìng)正,戴仰山;強(qiáng)梁腹板特殊開(kāi)孔應(yīng)力分析與補(bǔ)強(qiáng)方法研究[J];哈爾濱工程大學(xué)學(xué)報(bào);2003年02期
6 危曉麗;余紹鋒;;單向均勻受壓四邊簡(jiǎn)支開(kāi)孔板承載力近似計(jì)算[J];結(jié)構(gòu)工程師;2009年03期
7 朱正佑,程昌鈞;關(guān)于開(kāi)孔薄板大撓度問(wèn)題的一般數(shù)學(xué)理論[J];力學(xué)學(xué)報(bào);1986年02期
8 程昌鈞,呂小安;關(guān)于開(kāi)孔薄板大撓度問(wèn)題的一般數(shù)學(xué)理論(續(xù))[J];力學(xué)學(xué)報(bào);1989年02期
9 楊驍,程昌鈞;開(kāi)孔薄板的變分原理及屈曲和過(guò)屈曲分析的有限元方法[J];力學(xué)學(xué)報(bào);1991年02期
10 張丕辛,黃克智,陸明萬(wàn);圓柱殼開(kāi)孔的應(yīng)力分析[J];力學(xué)學(xué)報(bào);1991年06期
本文編號(hào):1967497
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1967497.html