公路貨運通道梁式橋沖擊系數(shù)研究
本文選題:梁式橋 + 公路貨運通道; 參考:《北京交通大學(xué)》2014年碩士論文
【摘要】:橋梁是公路貨運通道的重要組成部分,RC/PC簡支梁橋和連續(xù)梁橋結(jié)構(gòu)簡單、施工方便,在橋梁中占有很大比例。由于車輛自身的振動以及路面不平順等因素的存在,車輛過橋時會形成對橋梁的沖擊。我國《公路橋涵設(shè)計通用規(guī)范》(JTGD60-2004)中沖擊系數(shù)取值僅為橋梁基頻的函數(shù),而沖擊系數(shù)與橋梁的動力特性、車輛振動特性及行駛狀態(tài)、路面不平順等都有很大的關(guān)系,沖擊系數(shù)的合理取值及其適用范圍是值得商榷的問題。 公路貨運通道車流量高、載重量大,本文針對公路貨運通道的行車特點,對簡支梁橋和連續(xù)梁橋的跨中位移沖擊系數(shù)進(jìn)行了計算分析。 1.在查閱國內(nèi)外文獻(xiàn)的基礎(chǔ)上,對沖擊系數(shù)的發(fā)展和研究現(xiàn)狀進(jìn)行了回顧和總結(jié),對比了我國現(xiàn)行規(guī)范中沖擊系數(shù)取值與其他國家規(guī)范值,各國沖擊系數(shù)取值相差比較大,部分文獻(xiàn)中的結(jié)果與我國現(xiàn)行規(guī)范沖擊系數(shù)取值規(guī)律相反。 2.介紹了車橋相互作用模型的發(fā)展,建立三軸車輛的二維模型,用模態(tài)的方法建立橋梁模型,三角級數(shù)法生成路面的不平順,推導(dǎo)了車橋相互作用方程,用Newmark-β法對方程進(jìn)行求解。利用fortran語言編制了求解車橋相互作用方程的程序。通過與文獻(xiàn)中計算結(jié)果的對比,驗證本文程序的正確性。 3.以內(nèi)蒙古某貨運通道沿線橋梁為原型建立簡支梁和連續(xù)梁橋的模型,模擬車輛勻速正常行駛、行車擁堵、在橋上制動和加速過橋4種行車狀態(tài),考慮梁型、車重、行車速度、行車時距、車輛數(shù)、路面不平順等影響沖擊系數(shù)的因素,利用正交試驗的原理生成各種行車狀態(tài)下的計算工況,用自編程序進(jìn)行計算。分析各種行車狀態(tài)下簡支梁與連續(xù)梁跨中位移沖擊系數(shù)隨因素的變化趨勢,以及沖擊系數(shù)對各因素的敏感性。計算表明,不同行車狀態(tài)下,沖擊系數(shù)對各因素的敏感性不同,隨各因素的變化趨勢也不完全相同。對沖擊系數(shù)影響最大的因素為路面不平順,沖擊系數(shù)隨著路面不平順等級的提高有較大幅度的增加。車輛勻速正常行駛時橋梁的沖擊系數(shù)比擁堵和制動時略大,比加速過橋時小 4.考慮影響因素的不利水平,排列組合生成簡支梁和連續(xù)梁沖擊系數(shù)計算工況,根據(jù)計算結(jié)果擬合出了包含路面不平順和橋梁基頻兩個參數(shù)的沖擊系數(shù)計算公式。將擬合公式值與現(xiàn)行規(guī)范值進(jìn)行對比分析,表明在路面不平順等級較好時規(guī)范值偏大,計算值隨著橋梁基頻的增大有減小的趨勢。 5.實測一座橋梁單車過橋時的沖擊系數(shù),對比實測值與本文擬合公式取值的大小。由于本文擬合公式是在多輛車及其他不利因素水平下擬合的,擬合公式取值偏于保守。
[Abstract]:The bridge is an important part of the highway freight corridor. The RC / PC simply supported beam bridge and the continuous beam bridge have simple structure and easy construction, and occupy a large proportion in the bridge. Because of the vibration of the vehicle itself and the existence of the road irregularity, the impact on the bridge will be formed when the vehicle crosses the bridge. In JTGD60-2004), the impact coefficient is only a function of the basic frequency of the bridge, and the impact coefficient has a great relationship with the dynamic characteristics of the bridge, the vibration characteristics and the driving state of the vehicle, the road surface irregularity and so on. The reasonable value of impact coefficient and its scope of application are debatable issues. Because of the high traffic flow and heavy load in the highway freight corridor, the displacement impact coefficient of the simply supported beam bridge and the continuous beam bridge is calculated and analyzed according to the driving characteristics of the highway freight corridor. 1. On the basis of consulting domestic and foreign literature, this paper reviews and summarizes the development and research status of impact coefficient, compares the value of impact coefficient between China's current code and other countries, and shows that the value of impact coefficient is quite different from that of other countries. Some of the results in the literature are contrary to the current norms in China. 2. The development of vehicle-bridge interaction model is introduced, the two-dimensional model of three-axis vehicle is established, the bridge model is built by modal method, the road surface irregularity is generated by triangle series method, the equation of vehicle-bridge interaction is deduced, and the equation is solved by Newmark- 尾 method. A program for solving the equations of vehicle-bridge interaction is developed by using fortran language. The correctness of the program is verified by comparing the results with the results in the literature. 3. Taking a bridge along a freight corridor in Inner Mongolia as a prototype, a model of a simple supported beam and a continuous beam bridge is built to simulate the normal running of the vehicle at a uniform speed, traffic congestion, braking on the bridge and accelerating the crossing of the bridge, taking into account the beam type, vehicle weight, driving speed. The factors affecting the impact coefficient, such as the running time distance, the number of vehicles, the road surface irregularity, etc., are calculated by using the principle of orthogonal test to generate the calculation conditions under various driving conditions. The variation trend of displacement impact coefficient of simply supported beam and continuous beam with factors and the sensitivity of impact coefficient to each factor are analyzed. The calculation results show that the sensitivity of impact coefficient to each factor is different and the trend is not identical with each factor under different driving conditions. The most influential factor on the impact coefficient is the road surface irregularity, and the impact coefficient increases greatly with the increase of the road surface irregularity grade. The impact coefficient of the bridge is a little larger than that of congestion and braking, and smaller than that of accelerating crossing the bridge. 4. Considering the unfavorable level of influencing factors, the calculation conditions of impact coefficient of simply supported beam and continuous beam are formed by arrangement and combination. According to the calculated results, the calculation formula of impact coefficient including two parameters of road surface irregularity and bridge foundation frequency is fitted. By comparing the fitting formula value with the current code value, it is shown that the value of the standard value is larger when the road surface irregularity grade is better, and the calculated value tends to decrease with the increase of the bridge foundation frequency. 5. The impact coefficient of a bridge over a single bridge is measured, and the magnitude of the measured value and the value of the fitting formula in this paper are compared. Because the fitting formula of this paper is fitted under the level of many vehicles and other unfavorable factors, the value of the fitting formula is conservative.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U441.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王海城;施尚偉;;橋梁沖擊系數(shù)影響因素分析及偏差成因[J];重慶交通大學(xué)學(xué)報(自然科學(xué)版);2007年05期
2 徐日昶,路春和;林區(qū)橋梁動荷載沖擊系數(shù)的試驗研究[J];東北林業(yè)大學(xué)學(xué)報;1989年02期
3 鈕凱健;李昶;;基于時域模型的路面平整度模擬(英文)[J];Journal of Southeast University(English Edition);2010年03期
4 張為民;;大跨度混凝土公路橋梁沖擊系數(shù)的探討[J];低溫建筑技術(shù);2009年05期
5 伊洪建;李海超;文濤;;軍用橋梁沖擊系數(shù)的影響因素分析[J];國防交通工程與技術(shù);2008年01期
6 李玉良,孫福申,李曉紅;公路橋梁沖擊系數(shù)隨機變量的概率分布及沖擊系數(shù)譜[J];公路;1996年09期
7 漆景星;;公路橋梁沖擊系數(shù)計算方法研究[J];公路;2011年07期
8 黃新藝;陳彥江;盛洪飛;李巖;;多軸車輛—橋梁耦合振動響應(yīng)的數(shù)值解法[J];公路交通科技;2008年12期
9 黃新藝;卓衛(wèi)東;盛洪飛;李立云;;車橋耦合振動系統(tǒng)模型下橋梁沖擊效應(yīng)研究[J];公路交通科技;2010年03期
10 吳銘漢;桂水榮;陳水生;;4種車輛模型作用下T形剛構(gòu)橋沖擊系數(shù)對比研究[J];中外公路;2008年06期
相關(guān)博士學(xué)位論文 前5條
1 胡曉燕;大跨度公路橋梁車橋耦合振動響應(yīng)研究[D];武漢理工大學(xué);2009年
2 黃新藝;混凝土連續(xù)曲線梁橋在車輛荷載作用下的動力響應(yīng)研究[D];哈爾濱工業(yè)大學(xué);2008年
3 邵俊杰;貨物運輸通道的演變及實證研究[D];北京交通大學(xué);2010年
4 汪斌;道路模擬試驗臺路面不平度再現(xiàn)方法研究[D];武漢理工大學(xué);2010年
5 蔣培文;公路大跨徑連續(xù)體系橋梁車橋耦合振動研究[D];長安大學(xué);2012年
,本文編號:1958265
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1958265.html