云南現(xiàn)役大跨度連續(xù)剛構(gòu)橋跨中下?lián)戏治黾肮こ虘?yīng)用措施研究
本文選題:云南 + 大跨度連續(xù)剛構(gòu)橋 ; 參考:《昆明理工大學(xué)》2014年碩士論文
【摘要】:云南地處高原多山區(qū),大跨連續(xù)剛構(gòu)橋在各等級(jí)公路中都極其常見,并且其中很多在運(yùn)營(yíng)初期便出現(xiàn)了較嚴(yán)重的病害,尤其是跨中下?lián)蠁栴},因此對(duì)大跨連續(xù)剛構(gòu)橋進(jìn)行跨中下?lián)系某梢蚣皩?duì)策進(jìn)行針對(duì)性分析研究是非常有現(xiàn)實(shí)意義的。本文集中調(diào)研了元磨高速K209+499.6紅河大橋、K288+642阿墨江大橋等6座大跨連續(xù)剛構(gòu)橋的運(yùn)營(yíng)現(xiàn)狀,以目前國(guó)內(nèi)最大跨徑的不等跨連續(xù)剛構(gòu)橋紅河大橋(58m+182m+265m+194m+70m)為研究對(duì)象建立有限元模型分析下?lián)系某梢虿⑴c實(shí)測(cè)值進(jìn)行對(duì)比,提出剛構(gòu)橋跨中下?lián)蠁栴}的工程應(yīng)對(duì)措施并以下?lián)陷^為嚴(yán)重的K288+642阿墨江大橋(70m+2×130m+70m)為研究對(duì)象進(jìn)行加固效果對(duì)比分析,具體進(jìn)行了如下工作: 首先,詳細(xì)調(diào)研得到云南六座典型預(yù)應(yīng)力混凝土連續(xù)剛構(gòu)橋的病害情況,總結(jié)了連續(xù)剛構(gòu)橋病害特別是跨中下?lián)系囊恍┢毡榉植家?guī)律并對(duì)箱梁開裂及下?lián)系戎饕『M(jìn)行了初步分析。 其次,概述了大跨度連續(xù)剛構(gòu)橋跨中長(zhǎng)期下?lián)虾蟮慕Y(jié)構(gòu)受力特征、預(yù)應(yīng)力損失的計(jì)算方法及預(yù)應(yīng)力產(chǎn)生的變形計(jì)算、混凝土收縮徐變理論及超靜定結(jié)構(gòu)引起的徐變變形計(jì)算、箱梁開裂后的結(jié)構(gòu)承載力評(píng)估與計(jì)算。 再次,分析了施工過程中施工管理、控制參數(shù)對(duì)大跨度連續(xù)剛構(gòu)橋中長(zhǎng)期下?lián)系挠绊?并以云南元磨高速K209+499.6紅河大橋?yàn)檠芯繉?duì)象,建立空間有限元模型,重點(diǎn)分析了預(yù)應(yīng)力損失、混凝土收縮徐變及箱梁開裂對(duì)大跨度連續(xù)剛構(gòu)跨中長(zhǎng)期下?lián)系挠绊懖⑴c監(jiān)測(cè)數(shù)據(jù)對(duì)比分析。 最后,提出了減緩大跨度連續(xù)剛構(gòu)橋中長(zhǎng)期下?lián)显谠O(shè)計(jì)、施工、營(yíng)運(yùn)、現(xiàn)役階段的對(duì)策措施及工程方案,并以云南元磨高速K288+642阿墨江大橋?yàn)槔?詳細(xì)制定了以增設(shè)體外預(yù)應(yīng)力鋼束為主的工程處治措施,并對(duì)處治后的整體結(jié)構(gòu)進(jìn)行了空間建模對(duì)比分析和演算,同時(shí)運(yùn)用Midas FEA細(xì)部分析有限元軟件和預(yù)應(yīng)力等效荷載法建立實(shí)體模型對(duì)新增轉(zhuǎn)向塊、進(jìn)行局部應(yīng)力分析以檢驗(yàn)處治措施的可靠性,為其他工程應(yīng)用提供實(shí)用可行的借鑒經(jīng)驗(yàn)。
[Abstract]:Yunnan is located in mountainous areas of plateau, long span continuous rigid frame bridges are very common in all kinds of highways, and many of them have serious diseases in the early stage of operation, especially the problem of mid-span deflection. Therefore, it is of great practical significance to analyze the causes and countermeasures of long-span continuous rigid frame bridge. This paper focuses on the present operation situation of six long-span continuous rigid frame bridges, such as Yuanmo High-Speed K209 499.6 Honghe Bridge, K288642 Amo River Bridge, etc. Taking Honghe Bridge, a continuous rigid frame bridge with the largest span in China at present, as the object of study, the finite element model is established to analyze the cause of the deflection and to compare the measured value with the measured value. This paper puts forward the engineering countermeasures for the problem of deflection in the span of rigid frame bridge and compares the reinforcement effect of K288,642 Amo River Bridge (70m2 脳 130m 70m) with that of K288642. The concrete work is as follows: First of all, the disease of six typical prestressed concrete continuous rigid frame bridges in Yunnan is investigated in detail. This paper summarizes some general distribution laws of continuous rigid frame bridge diseases, especially mid-span deflection, and makes a preliminary analysis of the main diseases such as box girder cracking and deflection. Secondly, the stress characteristics of long-span continuous rigid frame bridge after long-span deflection, the calculation method of prestress loss and deformation caused by prestress, the theory of shrinkage and creep of concrete and the calculation of creep caused by statically indeterminate structure are summarized. Evaluation and calculation of structural bearing capacity after box girder cracking. Thirdly, the influence of construction management and control parameters on long-span continuous rigid frame bridge is analyzed, and the spatial finite element model of Yunnan Yuanmo High-speed K209 499.6 Honghe Bridge is established. The effects of prestressing loss, shrinkage and creep of concrete and cracking of box girder on long term deflection of long span continuous rigid frame span are analyzed and compared with monitoring data. Finally, the paper puts forward the countermeasures and engineering schemes to slow down the long-span continuous rigid frame bridge in the design, construction, operation and active stage, and takes the Yunnan-Yuanmo high-speed K288-642 Amo River Bridge as an example. The engineering treatment measures with the addition of external prestressed steel beam are formulated in detail, and the spatial modeling, contrast analysis and calculation of the whole structure after treatment are carried out. At the same time, the finite element analysis software of Midas FEA and the equivalent load method of prestress are used to establish the solid model to analyze the local stress of the new steering block to test the reliability of the treatment measures, and to provide practical and feasible experience for other engineering applications.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U448.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董榮杰,傅曼麗;預(yù)應(yīng)力張拉測(cè)試中的摩阻系數(shù)比值法[J];四川建筑科學(xué)研究;1997年03期
2 劉山洪;;克服大跨PC連續(xù)剛構(gòu)橋后期下?lián)显O(shè)計(jì)措施[J];重慶交通學(xué)院學(xué)報(bào);2006年06期
3 陳宇峰;徐君蘭;余武軍;;大跨PC連續(xù)剛構(gòu)橋跨中持續(xù)下?lián)铣梢蚣邦A(yù)防措施[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
4 齊東春;張永水;李強(qiáng);;大跨徑連續(xù)剛構(gòu)橋跨中下?lián)系某梢蚣皩?duì)策[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年06期
5 張峰,葉見曙;預(yù)應(yīng)力混凝土梁開裂后的結(jié)構(gòu)行為[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年04期
6 潘立本,陳蓓;用分段逼近法計(jì)算混凝土收縮與徐變引起的構(gòu)件預(yù)應(yīng)力損失[J];工程力學(xué);1998年04期
7 馬健;三門峽黃河公路大橋的主橋加固[J];公路;2004年06期
8 王法武;石雪飛;;大跨徑預(yù)應(yīng)力混凝土梁橋長(zhǎng)期撓度控制研究[J];公路;2006年08期
9 黃海東;林春姣;向中富;;大跨徑連續(xù)剛構(gòu)橋新型加固體系研究[J];公路;2008年11期
10 向木生,劉志雄,張開銀,沈成武;大跨度預(yù)應(yīng)力混凝土橋梁監(jiān)測(cè)監(jiān)控技術(shù)研究[J];公路交通科技;2002年04期
相關(guān)博士學(xué)位論文 前1條
1 文武松;大跨度PC連續(xù)剛構(gòu)橋撓曲開裂因素研究[D];西南交通大學(xué);2009年
,本文編號(hào):1948875
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1948875.html