中小跨度復(fù)合材料組合梁式橋梁結(jié)構(gòu)及性能研究
本文選題:GFRP + 復(fù)合材料橋梁; 參考:《重慶交通大學(xué)》2014年碩士論文
【摘要】:纖維增強(qiáng)復(fù)合材料具有很強(qiáng)的可塑性和結(jié)構(gòu)適應(yīng)性,與鋼材以及合金等金屬材料相比,復(fù)合材料能夠同時(shí)擁有質(zhì)輕、比強(qiáng)度和比剛度高、耐腐蝕以及材料的可設(shè)計(jì)性等突出優(yōu)點(diǎn)。近年來隨著GFRP(玻璃纖維)產(chǎn)量和性能的提高以及成型工藝的日益成熟,GFRP在土木工程中的應(yīng)用得到迅速推廣但要作為橋梁工程的主要受力構(gòu)件,還有大量的問題亟待解決,如:GFRP橋梁的結(jié)構(gòu)形式、制造工藝、材料設(shè)計(jì)、構(gòu)件連接方法等,這正是本文所涉及的研究內(nèi)容和研究意義所在。 本文對被廣泛使用的拉擠成型工藝生產(chǎn),纖維含量70%的e玻璃纖維/環(huán)氧樹脂型GFRP進(jìn)行拉伸、壓縮試驗(yàn),得出了其真實(shí)材料屬性。 探討出合理的GFRP組合結(jié)構(gòu)類型,提出較優(yōu)的組合結(jié)構(gòu)形式。采用該結(jié)構(gòu)形式給出具有代表性的工程試?yán),給出其詳細(xì)尺寸和參數(shù),并對該橋的強(qiáng)度、剛度和穩(wěn)定性進(jìn)行了分析,表明該類橋具有強(qiáng)度高、穩(wěn)定性好但剛度較弱的特點(diǎn)。通過對本文選用的GFRP型材進(jìn)行市場價(jià)格調(diào)查和統(tǒng)計(jì)該橋的GFRP材料用量,表明該橋具備較好的經(jīng)濟(jì)實(shí)用性。 針對本文探討的GFRP復(fù)合材料組合結(jié)構(gòu),設(shè)計(jì)了合理的連接構(gòu)造,并對不同連接方法的連接性能和破壞機(jī)理等進(jìn)行了對比分析,結(jié)果表明:①GFRP與鋼板膠接連接的破壞模式是膠層出現(xiàn)剪切破壞,導(dǎo)致連接失效。GFRP與鋼板螺栓連接的破壞模式是螺栓孔出現(xiàn)剪應(yīng)力集中,GFRP板在螺栓孔處剪應(yīng)力過大,形成剪切破壞。GFRP與鋼板膠-栓混合連接的破壞模式也是GFRP板在螺栓孔位置發(fā)生剪切破壞。②連接強(qiáng)度方面:膠-栓混合連接螺栓連接膠接連接。連接剛度方面:膠-栓混合連接膠接連接螺栓連接。連接延性方面:膠-栓混合連接螺栓連接膠接連接。③膠-栓混合連接中,螺栓的受力狀態(tài)分為3個(gè)階段:1)膠層產(chǎn)生塑性區(qū)之前,螺栓受力很小,荷載幾乎全是由膠層承擔(dān);2)膠層產(chǎn)生塑性區(qū)但塑性區(qū)逐步擴(kuò)展到螺栓孔之前,螺栓承擔(dān)的荷載開始變大,但仍不作為主要受力構(gòu)件;3)膠層的塑性區(qū)擴(kuò)展到螺栓孔處,螺栓承擔(dān)的荷載明顯變大。 此外由于膠-栓混合連接的復(fù)雜性和GFRP材料的特殊性,一些對螺栓連接或膠接有明顯影響的因素(如螺栓個(gè)數(shù)、端距),對GFRP與鋼板進(jìn)行膠-栓混合連接的影響效果還有待進(jìn)一步研究。通過有限元模擬分析,結(jié)果表明:①增加螺栓個(gè)數(shù)有助于提高膠-栓混合連接強(qiáng)度,但提升效果較微,,且單排螺栓數(shù)量不宜超過3個(gè)。②在膠層未產(chǎn)生塑性區(qū)之前,螺栓數(shù)量對膠-栓混合連接的剛度幾乎沒有影響;當(dāng)膠層產(chǎn)生塑性區(qū)之后,螺栓數(shù)量越多連接剛度越高;螺栓數(shù)量與剛度不成正比關(guān)系,當(dāng)單排螺栓數(shù)量超過3個(gè)之后,螺栓數(shù)量對連接剛度的影響可忽略不計(jì)。③端距對膠-栓混合連接的強(qiáng)度無明顯影響,但對剛度的影響較顯著。
[Abstract]:The fiber reinforced composites have strong plasticity and structural adaptability. Compared with metal materials such as steel and alloys, the composites can have light weight, high specific strength and specific stiffness at the same time. Corrosion resistance and the design of materials such as outstanding advantages. In recent years, with the improvement of GFRP (glass fiber) production and performance and the increasingly mature forming technology, the application of GFRP in civil engineering has been rapidly popularized, but as the main force member of bridge engineering, there are still a lot of problems to be solved urgently. For example, the structure form, manufacturing process, material design, component connection method of the GFRP bridge, which is the research content and significance of this paper. In this paper, the tensile and compression tests of e glass fiber / epoxy resin type GFRP, which is widely used in pultrusion molding and fiber content of 70%, are carried out, and the true material properties are obtained. The reasonable type of GFRP composite structure is discussed, and the better combination structure form is put forward. A typical engineering example is given in this paper. The detailed dimensions and parameters of the bridge are given. The strength, stiffness and stability of the bridge are analyzed. It is shown that this kind of bridge has the characteristics of high strength, good stability but weak stiffness. Through the market price investigation of the GFRP profile selected in this paper and the statistics of the GFRP material consumption of the bridge, it is shown that the bridge has good economic practicability. According to the composite structure of GFRP composite discussed in this paper, a reasonable connection structure is designed, and the connection performance and failure mechanism of different joining methods are compared and analyzed. The results show that the failure mode of the connection between GFRP and steel plate is shear failure of the adhesive layer, and the failure mode of the connection between GFRP and bolt is the shear stress concentration of the bolt hole and the excessive shear stress of the GFRP plate at the bolt hole. The failure mode of shear failure. GFRP and steel plate glue-bolt joint is also the shear failure of GFRP plate in bolt hole position. 2 connection strength: glue-bolt joint. Connection stiffness: glue-bolt joint bolt connection. Connection ductility: in glue bolt connection, adhesive connection, 3 glue and bolt hybrid connection, the stress state of the bolt is divided into three stages: 1) before the plastic zone is produced in the rubber layer, the force on the bolt is very small. The plastic zone of the rubber layer is almost entirely undertaken by the rubber layer. But before the plastic zone is gradually extended to the bolt hole, the load bearing by the bolt begins to become larger, but it is still not used as the main force member / unit / 3) the plastic zone of the rubber layer extends to the bolt hole. The load on the bolt is obviously increased. In addition, due to the complexity of binder bonding and the particularity of GFRP materials, some factors (such as the number of bolts) that have a significant effect on bolt connection or bonding, The effect of end-distance bonding on GFRP and steel plate is still to be further studied. Through finite element simulation analysis, the results show that increasing the number of bolts at 1 / 1 can improve the strength of the glue-bolt hybrid connection, but the lifting effect is relatively weak, and the number of single row bolts should not exceed 3. 2 before the plastic zone is produced in the rubber layer. The number of bolts has little effect on the stiffness of the joint; when the plastic zone is formed, the stiffness of the joint is increased with the increase of the number of bolts, and the number of bolts is not proportional to the stiffness, when the number of single row bolts exceeds 3, The effect of bolt number on the connection stiffness is negligible. 3. 3 end distance has no obvious effect on the strength of the glue-bolt joint, but it has a significant effect on the stiffness.
【學(xué)位授予單位】:重慶交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U448.216
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馮廣占,龔志鈺;玻璃鋼模型橋的試驗(yàn)分析[J];玻璃鋼/復(fù)合材料;1990年01期
2 王花娟;楊杰;劉新東;劉小建;;復(fù)合材料機(jī)械連接強(qiáng)度影響因素的研究進(jìn)展[J];材料導(dǎo)報(bào);2007年S3期
3 湯羽,湯國棟,蒙云;纖維增強(qiáng)復(fù)合材料的損傷粘彈性本構(gòu)方程[J];重慶交通學(xué)院學(xué)報(bào);1991年02期
4 劉洪玲;紡織結(jié)構(gòu)復(fù)合材料中的紡織品[J];產(chǎn)業(yè)用紡織品;2001年10期
5 殷惠光;王景全;李志剛;;FRP橋面板結(jié)構(gòu)特點(diǎn)及設(shè)計(jì)方法研究[J];常州工學(xué)院學(xué)報(bào);2006年01期
6 張振;;城市鋼桁架橋結(jié)構(gòu)設(shè)計(jì)要點(diǎn)探析[J];廣東科技;2007年10期
7 夏軍;80m跨徑下承式簡支焊接鋼桁架橋的設(shè)計(jì)與施工[J];鋼結(jié)構(gòu);2002年01期
8 張?jiān)獎(jiǎng)P,肖汝誠;FRP材料在大跨度橋梁結(jié)構(gòu)中的應(yīng)用展望[J];公路交通科技;2004年04期
9 湯國棟,湯羽,馮廣占;中國GRP/COM橋梁的研究與實(shí)踐[J];成都科技大學(xué)學(xué)報(bào);1995年06期
10 葉列平;馮鵬;;FRP在工程結(jié)構(gòu)中的應(yīng)用與發(fā)展[J];土木工程學(xué)報(bào);2006年03期
本文編號:1885511
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1885511.html