天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 交通工程論文 >

鐵路拱橋上無縫線路縱向梁軌相互作用與地震反應(yīng)分析研究

發(fā)布時(shí)間:2018-03-23 10:34

  本文選題:鐵路 切入點(diǎn):拱橋 出處:《西南交通大學(xué)》2014年博士論文


【摘要】:鐵路橋上鋪設(shè)無縫線路提高了線路運(yùn)營(yíng)平順性、減少了養(yǎng)護(hù)維修工作量,但存在的橋梁與軌道相互作用(簡(jiǎn)稱“梁軌相互作用”)問題的研究是鐵路設(shè)計(jì)中的重要課題,需對(duì)線路中所用到的各種橋型上無縫線路鋪設(shè)技術(shù)進(jìn)行研究。本文在國(guó)內(nèi)外已有研究基礎(chǔ)上,主要對(duì)鐵路拱橋上無縫線路梁軌相互作用相關(guān)問題做了研究,具體研究?jī)?nèi)容如下:1.鐵路三類拱橋上無縫線路縱向力計(jì)算簡(jiǎn)化平面模型的建立基于梁軌相互作用原理,分析了鐵路拱橋上鋪設(shè)無縫線路后橋梁結(jié)構(gòu)與線路軌道相互作用特點(diǎn),分別建立了上承式、中承式及下承式拱橋上無縫線路縱向力計(jì)算的簡(jiǎn)化平面模型,給出模型中拱肋、立柱墩等關(guān)鍵構(gòu)件參數(shù)取值計(jì)算方法;采用了一種新的鋼軌撓曲力計(jì)算方法并進(jìn)行了驗(yàn)證。2.鐵路拱橋上無縫線路縱向力計(jì)算程序編制及驗(yàn)證三類拱橋線橋墩一體化模型的建立采用統(tǒng)一流程,采用FORTRAN語言和ANSYS軟件相結(jié)合的方法編制了鐵路拱橋上無縫線路縱向力計(jì)算通用程序(ABCWR),該程序可完成拱橋和普通橋上無縫線路伸縮、撓曲、制動(dòng)及斷軌工況分析計(jì)算;分別以鐵路三跨簡(jiǎn)支梁和上承式拱橋?yàn)槔?通過與成熟計(jì)算程序BCWR和建立線路-橋梁空間耦合模型計(jì)算結(jié)果的對(duì)比,驗(yàn)證了本文編制ABCWR計(jì)算程序的通用性和計(jì)算結(jié)果的可信性。3.三類拱橋上無縫線路縱向梁軌相互作用影響因素研究利用ABCWR計(jì)算程序,解決了三類拱橋上無縫線路鋼軌伸縮力、撓曲力、制動(dòng)力及斷縫的計(jì)算問題。研究了拱肋、立柱墩或吊桿的溫差及截面剛度對(duì)三類拱橋鋼軌伸縮力的影響,給出了中承式和下承式拱橋鋼軌伸縮力計(jì)算簡(jiǎn)化方法;對(duì)三類拱橋鋼軌撓曲力和制動(dòng)力計(jì)算最不利工況進(jìn)行了總結(jié),建議重視上承式拱橋撓曲工況的分析;對(duì)比了公式法和梁軌相互作用法計(jì)算鋼軌斷縫值的差異,對(duì)三類拱橋均建議采用梁軌相互作用法分析斷軌工況;分析了橋跨及支座布置形式對(duì)上承式拱橋上無縫線路受力變形的影響,建議拱橋上宜設(shè)置三聯(lián)連續(xù)梁,將外側(cè)兩聯(lián)連續(xù)梁的固定支座設(shè)置在交界墩上,并需考慮設(shè)置一定數(shù)量的速度鎖定器來分配制動(dòng)工況下的墩臺(tái)受力。4.鐵路拱橋上無縫線路動(dòng)力計(jì)算有限元模型建立及軌道約束對(duì)動(dòng)力特性影響研究建立拱橋上無縫線路動(dòng)力計(jì)算線路-橋梁空間耦合有限元模型,模型中線路縱向阻力采用理想彈塑性形式,以上承式拱橋?yàn)槔?研究了二期恒載、鋼軌約束作用對(duì)拱橋結(jié)構(gòu)動(dòng)力特性的影響。分析結(jié)果可知,二期恒載降低了結(jié)構(gòu)整體自振頻率;由于線路縱向阻力約束作用限制了拱肋變形,立柱墩縱向剛度及彎曲自振頻率比不考慮軌道約束作用的要大。5.拱橋上無縫線路縱向地震反應(yīng)影響因素分析利用建立的線路-橋梁動(dòng)力計(jì)算空間耦合有限元模型,采用非線性時(shí)程逐步積分分析方法,對(duì)二期恒載、地震波頻譜特性、結(jié)構(gòu)阻尼比、豎向地震作用、小阻力扣件鋪設(shè)、拱肋溫差作用以及拱上橋跨布置形式等因素對(duì)上承式拱橋上無縫線路地震反應(yīng)規(guī)律進(jìn)行了詳細(xì)分析。研究表明上承式拱橋上采用三跨連續(xù)梁的方案并未增大地震作用下的無縫線路受力,結(jié)合伸縮、撓曲等常規(guī)分析工況的研究結(jié)論,進(jìn)一步說明此方案要優(yōu)于拱上采用簡(jiǎn)支梁方案。6.室內(nèi)有砟軌道橋上無縫線路縱向地震反應(yīng)振動(dòng)臺(tái)模型試驗(yàn)設(shè)計(jì)實(shí)施了室內(nèi)有砟軌道橋上無縫線路縱向地震反應(yīng)振動(dòng)臺(tái)模型試驗(yàn),驗(yàn)證理論計(jì)算中線路縱向阻力采用理想彈塑性本構(gòu)形式的合理性。由試驗(yàn)結(jié)果可知,模型試驗(yàn)鋼軌的縱向約束作用提高了試驗(yàn)梁體的低階縱向自振頻率,這與理論分析結(jié)論一致;采用理想彈塑性阻力形式計(jì)算得到的鋼軌應(yīng)力比試驗(yàn)結(jié)果要大,但會(huì)低估實(shí)際中梁體的位移;基于測(cè)試結(jié)果對(duì)理論模型線路阻力參數(shù)修正后的計(jì)算結(jié)果與試驗(yàn)結(jié)果吻合較好;建議理論分析中可采用理想彈塑性阻力形式的假定,鋼軌地震力計(jì)算結(jié)果偏安全,能為工程所接受。
[Abstract]:The railway bridge CWR on improving line operating comfort, reduce maintenance workload, but the interaction between bridge and track ("girderrailinteraction") problem is an important problem in the design of railway bridge, seamless line used in the line laying technology research. In this paper, based on existing research, the main problems of CWR on Railway arch bridge rail interaction is studied. The main research contents are as follows: the establishment of plane simplified calculation model based on the principle of interaction between girder and rail longitudinal force of CWR 1. railway three arch bridge, analysis of CWR on Railway arch bridge after the bridge structure and track interaction characteristics were established on the bearing type, bearing type and simplified plane model for longitudinal forces of CWR on Calculation of arch bridge, to die Type of arch rib, calculation method of key component parameters such as pier column value; using a new rail deflection force calculation method was presented and the longitudinal force of CWR on Railway arch bridge calculation to verify the.2. compilation and verification procedures of three types of arch bridge and pier integration model by using the unified process method, using FORTRAN language and ANSYS software the combination of the longitudinal forces of CWR on Railway arch bridge calculation program (ABCWR), the program can be completed expansion of CWR and ordinary bridge arch bridge deflection analysis and calculation of braking and broken rail conditions; respectively by the iron road three span girder and deck arch bridge as an example, by comparing with the mature BCWR program the calculation results and establish bridge spatial coupling model line, seamless line and verify the ABCWR program compiled general and calculation results of the credibility of.3. class three arch longitudinal beam The interaction between the rail and the influencing factors of the use of ABCWR program to solve the three kind of arch bridge on the jointless rail expansion force, bending force, braking force and calculation of broken seam. Of arch rib, temperature difference and cross-section column pier or boom stiffness on the three arch bridge rail expansion force influence is given in the deck and arch bridge rail expansion force of three kinds of simplified calculation method; arch bridge rail deflection force and braking force calculation of the most unfavorable conditions are summarized, analysis demonstrate the importance of the arch bridge deflection mode; comparison of formula method and girderrailinteraction method to calculate the difference of rail broken gap value. The three arch bridge analysis of broken rail conditions using girderrailinteraction method; analysis of the bridge span and the bearing arrangement form of deck type arch bridge on the influence of CWR deformation, suggestions on arch bridge should set the triple continuous beam, the outer connecting two The fixed bearing beam is arranged in the continued juncture pier, and the need to consider a certain amount of speed lock to distribute the braking condition of pier CWR dynamic stress calculation of.4. railway arch bridge finite element model is established and the track constraints on the dynamic effect of computing coupled finite element model of track bridge dynamic joint space line arch bridge, longitudinal resistance model in the ideal elastic-plastic form above the arch bridge as an example, studied two period dead load effect of rail bound on the dynamic characteristics of bridge structure. The analysis results, two dead load reduces the overall structure of the self vibration frequency; due to the longitudinal resistance constraint limits the deformation of arch rib, column pier longitudinal rigidity and bending vibration frequency than that without considering the factors of.5. arch bridge CWR on longitudinal seismic response analysis of the effect of track restraint construction Finite element spatial coupling model calculation of bridge power line up, using the nonlinear time history analysis method of two step integral, constant load, seismic wave spectrum, damping ratio, vertical earthquake, small resistance fastener laying, arch rib arch bridge and temperature effect on the layout and other factors are analyzed in detail on deck arch bridge of CWR on seismic response law. The results show that the arch bridge with three span continuous beams did not increase scheme CWR under earthquake force, combined with the expansion, conclusion conditions for routine analysis of deflection, further shows that this scheme is superior to the arch using the simple scheme of.6. indoor ballast the track of CWR on Bridge longitudinal seismic response of the shaking table model test design and implementation of indoor ballastless track CWR on bridge longitudinal seismic response of shaking table model tests verify the theoretical calculation of line The road longitudinal resistance by using ideal elastic-plastic constitutive form of rationality. The test results show that the longitudinal restraint model test of rail improves the low order test beam body longitudinal vibration frequency, the theoretical analysis and conclusion; the ideal elastic-plastic rail resistance form the calculated stress ratio test results to, but will underestimate the beam displacement; based on the test results of the theoretical calculation results of line resistance model corrected parameters agree well with the experimental results; the idealized elastic-plastic resistance forms are suggested in the theoretical analysis, the steel rail base results are safer, can be accepted by engineering.

【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:U213.9;U442.55

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉衍峰;高亮;馮雅薇;;橋上無縫道岔受力與變形的有限元分析[J];北京交通大學(xué)學(xué)報(bào);2006年01期

2 全順喜;王平;陳嶸;;鋼桁梁梁端橫向伸縮對(duì)軌道幾何形位的影響[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年06期

3 羅學(xué)海,朱葳,謝逢萱;鐵路實(shí)體橋墩動(dòng)力分析的簡(jiǎn)化方法[J];地震工程與工程振動(dòng);1982年03期

4 李立峰;黃佳梅;吳文朋;王連華;;基于IDA的高墩大跨橋梁抗震性能評(píng)估[J];地震工程與工程振動(dòng);2012年01期

5 郭月峰;;鋼管混凝土提籃拱橋內(nèi)傾角對(duì)內(nèi)力分布影響的研究[J];福建建筑;2007年11期

6 馬坤全,陳文艷;軌道交通無縫線路對(duì)高架橋抗震性能的影響[J];城市軌道交通研究;2002年01期

7 陳寶春,孫潮,陳友杰;橋梁轉(zhuǎn)體施工方法在我國(guó)的應(yīng)用與發(fā)展[J];公路交通科技;2001年02期

8 高亮;楊文茂;曲村;蔡小培;;高鐵長(zhǎng)大橋梁CRTSⅠ型板式無砟軌道無縫線路的動(dòng)力學(xué)特性[J];北京交通大學(xué)學(xué)報(bào);2013年01期

9 蔣金洲,張煅;南非象河橋上無縫線路鋼軌伸縮力和溫度力[J];國(guó)外橋梁;1998年04期

10 張連振;黃僑;;基于優(yōu)化設(shè)計(jì)理論的橋梁有限元模型修正[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2008年02期

相關(guān)博士學(xué)位論文 前5條

1 陰存欣;鐵路橋梁縱向附加力的靜動(dòng)力非線性分析與仿真研究[D];鐵道部科學(xué)研究院;2000年

2 徐慶元;高速鐵路橋上無縫線路縱向附加力三維有限元靜力與動(dòng)力分析研究[D];中南大學(xué);2005年

3 楊榮山;橋上無縫道岔縱向力計(jì)算理論與試驗(yàn)研究[D];西南交通大學(xué);2008年

4 任娟娟;橋上無縫道岔區(qū)縱連式無砟軌道受力特性與結(jié)構(gòu)優(yōu)化研究[D];西南交通大學(xué);2009年

5 閆斌;高速鐵路中小跨度橋梁與軌道相互作用研究[D];中南大學(xué);2013年

,

本文編號(hào):1653081

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1653081.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶027c5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com