振動(dòng)輪作用下土壤中的豎向應(yīng)力分布研究
本文選題:單鋼輪振動(dòng)壓路機(jī) 切入點(diǎn):土壤壓實(shí) 出處:《長(zhǎng)安大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:我國(guó)公路多為強(qiáng)基薄面的半剛性路面,路基的強(qiáng)度決定了路面的承載能力和使用壽命,基層壓實(shí)度不足則容易導(dǎo)致路面沉陷等致命損傷,無(wú)法徹底修復(fù),因此基層土壤的壓實(shí)度是高承載力和長(zhǎng)使用壽命的關(guān)鍵。 單鋼輪振動(dòng)壓路機(jī)作為基層土壤壓實(shí)的主導(dǎo)設(shè)備,主要靠鋼輪的自重和振動(dòng)對(duì)土壤進(jìn)行壓實(shí)。本文以全液壓雙驅(qū)單鋼輪振動(dòng)壓路機(jī)為試驗(yàn)樣機(jī),根據(jù)樣機(jī)性能參數(shù)測(cè)試結(jié)果建立“振動(dòng)輪—土壤”的Abaqus有限元模型,并采用試驗(yàn)研究與仿真分析相結(jié)合的方法對(duì)振動(dòng)輪作用下土壤中的豎向應(yīng)力分布進(jìn)行研究。 本文首先分析了土壤的組成和壓實(shí)機(jī)理,介紹了不同的壓實(shí)方法及各自的理論依據(jù),并對(duì)土壤的彈性、粘性及塑性本構(gòu)關(guān)系進(jìn)行了分析。 然后通過(guò)試驗(yàn)得出了試驗(yàn)土壤的最佳含水量及土壤干密度與土壤的彈性模量、內(nèi)摩擦角、黏聚力之間的聯(lián)系,分析了振動(dòng)壓路機(jī)以低頻高幅、高頻低幅兩種振動(dòng)工況壓實(shí)土壤時(shí)的起步起振特性,并根據(jù)振動(dòng)輪作用下土壤中豎向應(yīng)力的測(cè)試結(jié)果,分析得出豎向應(yīng)力由動(dòng)態(tài)應(yīng)力和靜態(tài)應(yīng)力兩部分組成,其中靜態(tài)應(yīng)力大于動(dòng)態(tài)應(yīng)力,動(dòng)態(tài)應(yīng)力頻率與鋼輪振動(dòng)頻率相同,并且分析了土壤中豎向應(yīng)力幅值隨土壤深度的變化規(guī)律。 最后根據(jù)Abaqus模型的仿真結(jié)果,,分析了鋼輪靜壓以及振動(dòng)壓實(shí)時(shí)土壤中豎向應(yīng)力在鋼輪寬度方向上的分布,發(fā)現(xiàn)同深度時(shí)鋼輪邊緣下方土壤中的豎向應(yīng)力值最大;分析了土壤表層應(yīng)力達(dá)到最大值時(shí)土壤中豎向應(yīng)力分布規(guī)律,發(fā)現(xiàn)了土壤阻尼導(dǎo)致的應(yīng)力傳播滯后效應(yīng);分析了鋼輪振動(dòng)頻率對(duì)土壤中豎向應(yīng)力幅值及豎向應(yīng)力幅值隨深度衰減率的影響,對(duì)土壤不同深度的頻率響應(yīng)進(jìn)行了闡述,然后分析了名義振幅對(duì)土壤不同深度處豎向應(yīng)力幅值的影響規(guī)律,為實(shí)際選擇振動(dòng)參數(shù)提供了數(shù)據(jù)依據(jù)。
[Abstract]:Most highways in our country are semi-rigid pavement with strong foundation and thin surface. The strength of roadbed determines the bearing capacity and service life of pavement, and the insufficient compaction of base can easily lead to fatal damage such as pavement subsidence and can not be repaired thoroughly. Therefore, the compaction of soil is the key to high bearing capacity and long service life. As the dominant equipment of soil compaction, single steel wheel vibratory roller compacts the soil mainly by the weight and vibration of steel wheel. In this paper, the full hydraulic double drive single steel wheel vibratory roller is used as the experimental prototype. The Abaqus finite element model of "vibratory wheel-soil" was established according to the test results of the performance parameters of the prototype. The vertical stress distribution in the soil under the action of the vibration wheel was studied by means of the combination of experimental research and simulation analysis. In this paper, the composition and compaction mechanism of soil are analyzed, the different compaction methods and their theoretical basis are introduced, and the elastic, viscous and plastic constitutive relations of soil are analyzed. Then the relationship between the optimum soil moisture content and soil dry density and the elastic modulus, internal friction angle and cohesion of the soil is obtained, and the vibration roller with high amplitude at low frequency is analyzed. Starting vibration characteristics of compacted soil under high frequency and low amplitude vibration conditions. According to the test results of vertical stress in soil under vibration wheel, it is concluded that vertical stress is composed of dynamic stress and static stress. The static stress is larger than the dynamic stress, and the frequency of dynamic stress is the same as the vibration frequency of steel wheel, and the variation of vertical stress amplitude with soil depth is analyzed. Finally, according to the simulation results of Abaqus model, the distribution of vertical stress in the width direction of steel wheel is analyzed in the static pressure and vibration pressure of steel wheel. It is found that the vertical stress in the soil under the edge of steel wheel is the largest at the same depth. The vertical stress distribution in the soil was analyzed when the soil surface stress reached the maximum value, and the hysteresis effect of soil damping was found. The effects of vibration frequency of steel wheel on the amplitude of vertical stress and the attenuation rate of amplitude of vertical stress with depth in soil are analyzed. The frequency response of soil at different depths is expounded. Then, the effect of nominal amplitude on vertical stress amplitude at different depth of soil is analyzed, which provides a data basis for the actual selection of vibration parameters.
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U412.22;U415.521
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫偉春;;土力學(xué)中應(yīng)力應(yīng)變及臨界狀態(tài)下基本概念的研究[J];大眾科技;2008年03期
2 劉本學(xué);王國(guó)富;;仿沖擊振動(dòng)壓實(shí)機(jī)-土壤三維模型的仿真及試驗(yàn)[J];公路交通科技(應(yīng)用技術(shù)版);2008年05期
3 高淑霞;;淺談公路工程填土路基壓實(shí)度的重要性[J];甘肅科技;2010年22期
4 尹繼瑤;;振動(dòng)壓實(shí)機(jī)理與壓路機(jī)的振動(dòng)方式[J];交通世界(建養(yǎng).機(jī)械);2010年Z1期
5 張志峰;郝飛;馮忠緒;;振動(dòng)輪-土壤模型的有限元分析[J];建筑機(jī)械;2008年15期
6 范鏡泓,王建國(guó);土的內(nèi)時(shí)本構(gòu)模型及其與經(jīng)典塑性模型的關(guān)系[J];力學(xué)學(xué)報(bào);1989年S1期
7 李靖;傅清;許鎖林;;壓路機(jī)十字鉸接軸的疲勞仿真分析[J];建筑機(jī)械;2013年13期
8 雷華陽(yáng);土的本構(gòu)模型研究現(xiàn)狀及發(fā)展趨勢(shì)[J];世界地質(zhì);2000年03期
9 徐秉業(yè);劉信聲;陳森燦;;塑性力學(xué)中的本構(gòu)關(guān)系及其內(nèi)在聯(lián)系——講授塑性本構(gòu)關(guān)系的一些體會(huì)[J];教育研究通訊;1982年02期
10 姚仰平;侯偉;;土的基本力學(xué)特性及其彈塑性描述[J];巖土力學(xué);2009年10期
本文編號(hào):1650282
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1650282.html