脈沖型近斷層地震作用下深水橋墩動(dòng)力響應(yīng)特性研究
本文關(guān)鍵詞: 深水橋梁 等效單墩 近場(chǎng)地震 遠(yuǎn)場(chǎng)地震 速度脈沖 脈沖參數(shù) 動(dòng)水壓力 地震動(dòng)響應(yīng) 出處:《北京交通大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:地震作用下,由于動(dòng)水和深水橋梁水中部分的動(dòng)力相互作用,勢(shì)必顯著改變橋梁的振動(dòng)特性和地震響應(yīng),而不同的地震動(dòng)類(lèi)型以其獨(dú)特的頻譜特性,有可能會(huì)對(duì)橋梁的動(dòng)力行為產(chǎn)生不同的影響。脈沖型近斷層地震下深水橋梁的動(dòng)力響應(yīng)特征,是深水橋梁抗震設(shè)計(jì)中有待研究的重要科學(xué)問(wèn)題。 本文采用基于流固耦合理論的勢(shì)流體動(dòng)力數(shù)值算法,以典型鐵路深水橋梁的等效單墩模型為對(duì)象,開(kāi)展了如下研究工作: (1)采用基于流固耦合理論的勢(shì)流體計(jì)算方法,借助ADINA有限元軟件進(jìn)行地震作用下水中橋墩的流固耦合動(dòng)力分析。對(duì)比研究了近場(chǎng)和遠(yuǎn)場(chǎng)地震荷載激勵(lì)下橋墩的動(dòng)力響應(yīng)響應(yīng)特性,分析動(dòng)水效應(yīng)對(duì)矩形、圓形兩種不同截面形式的等效單墩結(jié)構(gòu)的振動(dòng)特性和地震動(dòng)響應(yīng)的影響程度,并對(duì)半解析的Morison方程法進(jìn)行了對(duì)比檢驗(yàn)。結(jié)果表明:隨著水深的增加,橋墩自振周期不斷延長(zhǎng)。與無(wú)水環(huán)境下相比,動(dòng)水壓力的存在使得橋墩結(jié)構(gòu)的地震響應(yīng)變化顯著,并且近場(chǎng)地震作用下橋墩結(jié)構(gòu)的動(dòng)力響應(yīng)明顯大于遠(yuǎn)場(chǎng),因此對(duì)于近斷層區(qū)域的深水橋梁的抗震設(shè)計(jì)應(yīng)給予關(guān)注。 (2)在近、遠(yuǎn)場(chǎng)地震激勵(lì)下深水橋墩的動(dòng)力響應(yīng)計(jì)算基礎(chǔ)之上,對(duì)作用于矩形、圓形兩種不同截面形式橋墩的動(dòng)水壓力分布規(guī)律以及總動(dòng)水壓力特性進(jìn)行對(duì)比分析,并與我國(guó)鐵路、公路規(guī)范以及日本規(guī)范中的動(dòng)水壓力計(jì)算方法進(jìn)行了檢驗(yàn)?傮w而言,地震作用下,深水橋墩結(jié)構(gòu)所受到的動(dòng)水壓力隨著水深的增加而不斷增大;動(dòng)水壓力沿橋墩高度是先增大后減小的拋物線型分布。通過(guò)對(duì)各規(guī)范算法的檢驗(yàn)可知,日本規(guī)范規(guī)定的總動(dòng)水壓力值偏大而中國(guó)公路規(guī)范規(guī)定的總動(dòng)水壓力偏;對(duì)于分布動(dòng)水壓力,近場(chǎng)地震下,對(duì)于矩形截面橋墩,兩規(guī)范動(dòng)水壓力估計(jì)不足;而對(duì)于圓形截面橋墩,日本規(guī)范偏于保守,鐵路規(guī)范結(jié)果較為接近。遠(yuǎn)場(chǎng)地震下,兩類(lèi)規(guī)范算法的動(dòng)水壓力都偏于保守。 (3)采用人工合成近斷層脈沖型地震動(dòng)的方法,定量分析脈沖峰值Vp、脈沖周期Tp、脈沖類(lèi)型三類(lèi)代表性速度脈沖參數(shù)對(duì)矩形、圓形兩種截面形式深水橋梁動(dòng)力響應(yīng)的影響。結(jié)果表明:在人工合成近場(chǎng)脈沖型地震動(dòng)作用下,深水橋墩結(jié)構(gòu)的地震動(dòng)響應(yīng)比無(wú)脈沖時(shí)有較大的增加,并且脈沖峰值Vp、脈沖周期Tp、脈沖類(lèi)型,這三類(lèi)脈沖參數(shù)對(duì)深水橋墩地震動(dòng)響應(yīng)影響顯著。脈沖峰值Vp對(duì)深水橋墩地震動(dòng)響應(yīng)的影響程度隨著Vp的增加而不斷增大;當(dāng)脈沖周期接近橋墩結(jié)構(gòu)的自振周期時(shí),Tp對(duì)深水橋墩地震動(dòng)影響最大;在深水橋墩結(jié)構(gòu)自振周期變化范圍內(nèi),C類(lèi)脈沖對(duì)深水橋墩地震動(dòng)響應(yīng)影響最大,B類(lèi)次之,A類(lèi)最小。
[Abstract]:Because of the dynamic interaction between the dynamic water and the underwater part of the deep water bridge, the vibration characteristics and the seismic response of the bridge will be changed significantly under the earthquake action, and different types of ground motion will have their unique spectral characteristics. The dynamic response characteristics of deep water bridges under impulsive near-fault ground earthquakes are important scientific problems to be studied in seismic design of deep water bridges. In this paper, the potential hydrodynamic numerical algorithm based on the fluid-solid coupling theory is used to study the equivalent single-pier model of typical deep-water railway bridges as follows: 1) the potential fluid calculation method based on fluid-solid coupling theory is adopted. The fluid-solid coupling dynamic analysis of bridge piers under seismic action is carried out by means of ADINA finite element software, and the dynamic response characteristics of piers under near-field and far-field seismic loads are compared and studied. The influence of hydrodynamic effect on the vibration characteristics and seismic response of rectangular and circular equivalent single-pier structures is analyzed. The semi-analytical Morison equation method is compared. The results show that with the increase of water depth, the natural vibration period of bridge piers is prolonged and compared with that in anhydrous environment. The dynamic water pressure makes the seismic response of pier structure change significantly, and the dynamic response of pier structure under near-field earthquake is obviously larger than that of far field. Therefore, attention should be paid to seismic design of deep water bridges near faults. (2) on the basis of dynamic response calculation of deep water pier under near and far field earthquake excitation, it acts on rectangle. The distribution law of hydrodynamic pressure and the characteristics of total hydrodynamic pressure of two kinds of circular piers with different cross-section are compared and analyzed, and compared with the railway in China. The calculation method of dynamic water pressure in highway code and Japanese code is tested. In general, the dynamic water pressure of deep water pier structure increases with the increase of water depth. The hydrodynamic pressure along the pier height is a parabolic distribution which increases first and then decreases. The total dynamic water pressure specified in Japanese code is higher than that in Chinese highway code. For the distributed hydrodynamic pressure, under near-field earthquake, for the rectangular section pier, the two specifications of the dynamic water pressure estimate is insufficient; For circular section pier, the Japanese code is conservative and the result of railway code is close. Under far field earthquake, the hydrodynamic pressure of the two kinds of code algorithms is conservative. The method of synthetic near-fault pulsed ground motion is used to quantitatively analyze the rectangular pulse parameters of pulse peak value, pulse period T _ p and pulse type. The effect of circular cross-section on the dynamic response of deep water bridge shows that under the action of synthetic near-field pulsed ground motion, the response of deep water pier structure is larger than that without pulse. And pulse peak Vp, pulse period Tp, pulse type. These three kinds of pulse parameters have a significant effect on the seismic response of deep water piers. The effect of peak pulse V _ p on the seismic response of deep water piers increases with the increase of VP. When the pulse period is close to the natural vibration period of pier structure, Tp has the greatest influence on the ground motion of deep water pier. In the range of the natural vibration period of deep water pier structure, the effect of C type pulse on the ground motion response of deep water pier is the biggest and the second is the B type and the second class A.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:U442.55
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張國(guó)明;宋波;;動(dòng)水壓力對(duì)深水橋梁性能設(shè)計(jì)的影響[J];北京科技大學(xué)學(xué)報(bào);2009年09期
2 宋波;李?lèi)?;高樁承臺(tái)動(dòng)水力簡(jiǎn)便計(jì)算方法[J];北京科技大學(xué)學(xué)報(bào);2011年04期
3 廖文義,羅俊雄,萬(wàn)絢;隔震橋梁承受近斷層地震之反應(yīng)分析[J];地震工程與工程振動(dòng);2001年S1期
4 王東升,馮啟民,翟桐;近斷層地震動(dòng)作用下鋼筋混凝土橋墩的抗震性能[J];地震工程與工程振動(dòng);2003年01期
5 李富榮;陳國(guó)興;王志華;;考慮動(dòng)水壓力影響的單柱式橋墩地震反應(yīng)分析[J];地震工程與工程振動(dòng);2008年02期
6 田玉基;楊慶山;盧明奇;;近斷層脈沖型地震動(dòng)的模擬方法[J];地震學(xué)報(bào);2007年01期
7 李爽;謝禮立;;近場(chǎng)問(wèn)題的研究現(xiàn)狀與發(fā)展方向[J];地震學(xué)報(bào);2007年01期
8 柳春光;齊念;;考慮流固耦合作用的深水橋墩地震響應(yīng)分析[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2009年04期
9 翟長(zhǎng)海;張林春;李爽;謝禮立;;近場(chǎng)地震動(dòng)對(duì)大跨剛構(gòu)橋影響的分析[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2010年S1期
10 高學(xué)奎;朱f^;李輝;;近場(chǎng)地震作用下深水橋墩的地震響應(yīng)分析[J];工程抗震與加固改造;2006年03期
相關(guān)博士學(xué)位論文 前1條
1 劉振宇;深水橋梁的地震響應(yīng)研究[D];西南交通大學(xué);2008年
,本文編號(hào):1470751
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1470751.html