鹽水介質(zhì)中環(huán)境友好型緩蝕劑對銅及銅合金緩蝕機理研究
發(fā)布時間:2021-08-28 08:28
銅及銅合金因其優(yōu)異的機械性能、熱學性能以及導電性而被廣泛應(yīng)用于各行各業(yè)。加入少量的有機緩蝕劑如半胱氨酸(Cys)可以提升銅及銅合金的耐蝕性能。本文研究了半胱氨酸對銅及銅合金在不同腐蝕介質(zhì)中的緩蝕機理及腐蝕機制,即多種技術(shù)協(xié)同使用揭示了表面區(qū)的成分變化信息,并建立了半胱氨酸作用下銅及銅合金在相應(yīng)腐蝕環(huán)境中的表面吸附模型。研究結(jié)果表明,添加一定劑量(10-2M)的半胱氨酸可以明顯降低銅及銅合金的腐蝕速率。本研究按照以下三部分開展:1、本部分研究了半胱氨酸和碘離子對銅在0.5MNa2SO4(pH=2)溶液中腐蝕行為的協(xié)同抑制效應(yīng)。動電位極化曲線結(jié)果表明Cys是銅腐蝕過程的混合型抑制劑,其對陰極過程影響較大,Cys會大幅降低腐蝕電流密度并使腐蝕電位負移。同時,碘離子會提升Cys的抑制效率。依據(jù)電化學阻抗譜測試結(jié)果,本文提出了兩種添加劑協(xié)同作用下金屬/溶液界面的擬合電路模型。多種表面分析技術(shù)進一步確定了緩蝕劑分子在金屬/溶液界面吸附從而使銅腐蝕過程被抑制。Langmiur溫吸附過程可以用來描述銅表面Cys的緩蝕機理。Cys分子活性位點會在銅表面形成一層抑制膜,在此基礎(chǔ)上添加碘離子會在銅表面形成預(yù)...
【文章來源】:北京科技大學北京市 211工程院校 教育部直屬院校
【文章頁數(shù)】:119 頁
【學位級別】:博士
【文章目錄】:
Acknowledgement
摘要
Abstract
1 Introduction
2 Copper and Copper Alloy Corrosion
2.1 Basics of Copper Corrosion
2.2 Corrosion Inhibitors
2.2.1 Inorganic Corrosion Inhibitors
2.2.2 Organic Inhibitors
2.3 Factors Affecting Corrosion Inhibition
2.3.1 Type of Substrate (Metal)
2.3.2 Electronic Structure of Inhibitors
2.3.3 Nature of the Corrosive Media
2.4 Corrosion Inhibitors Efficiency Evaluation Methods
2.4.1 Weight Loss Measurement
2.4.2 Potentiodynamic Polarization
2.4.3 Electrochemical Impedance Spectroscopy (EIS)
2.4.4 Scanning Electrochemical Microscopy (SECM)
2.4.5 Surface Analytical Methods
2.5 The Adsorption of Corrosion Inhibitor and its Isotherms
2.5.1 Langmuir Adsorption Isotherm
2.5.2 Freundlich Adsorption Isotherm
2.5.3 Temkin Adsorption Isotherm
2.5.4 Adsorption Energy
2.6 Problems in Current Research
2.7 Main Content of Current Research
3 Synergistic Inhibitive Effect of Cysteine and Iodide Ion on the CorrosionBehavior of Copper in Acidic Sulfate Solution
3.1 Introduction
3.2 Experimental
3.3 Results
3.3.1 Potentiodynamic Polarization Results
3.3.2 EIS Results
3.3.3 SEM Results
3.3.4 XPS Results
3.4 Discussion
3.5 Summary
4 The Protection Role of Cysteine for Cu-5Zn-5Al-1Sn Alloy Corrosion in 3.5wt.% NaCl Solution
4.1 Introduction
4.2 Experimental
4.3 Results
4.3.1 Potentiodynamic Polarization
4.3.2 Electrochemical Impedance Spectroscopy
4.3.3 SEM Analysis
4.3.4 XPS and Auger Results
4.4 Discussion
4.5 Summary
5 Effect of Immersion Time on the Corrosion of Cu-5Zn-5Al-1Sn Alloy andAnti-corrosion Activity of Cysteine in 3.5 wt.% NaCl Solution
5.1 Introduction
5.2 Experimental
5.3 Results
5.3.1 Electrochemical Impedance Spectroscopy
5.3.2 SEM/EDS Results
5.3.3 SERS(Surface Enhanced Raman Spectroscopy)
5.3.4 XPS Results
5.4 Discussion
5.5 Summary
6 General Conclusions
7 Innovation Points
References
Author's Resume and Research Results
Dissertation Data Set
【參考文獻】:
期刊論文
[1]In vitro biodegradability of Mg-2Gd-xZn alloys with different Zn contents and solution treatments[J]. Meng Zhang,Wei-Lin Deng,Xiao-Ning Yang,Yong-Kang Wang,Xiang-Yu Zhang,Rui-Qiang Hang,Kun-Kun Deng,Xiao-Bo Huang. Rare Metals. 2019(07)
[2]Corrosion resistance of Mg(OH)2/Mg-Al-layered double hydroxide coatings on magnesium alloy AZ31:influence of hydrolysis degree of silane[J]. Qing-Song Yao,Zhong-Chao Li,Zai-Meng Qiu,Fen Zhang,Xiao-Bo Chen,Dong-Chu Chen,Shao-Kang Guan,Rong-Chang Zeng. Rare Metals. 2019(07)
[3]Corrosion protection properties of vanadium films formed on zinc surfaces[J]. ZOU Zhongli,LI Ning,and LI Deyu Department of Applied Chemistry,School of Chemical Engineering & Technology,Harbin Institute of Technology,Harbin 150001,China. Rare Metals. 2011(02)
本文編號:3368173
【文章來源】:北京科技大學北京市 211工程院校 教育部直屬院校
【文章頁數(shù)】:119 頁
【學位級別】:博士
【文章目錄】:
Acknowledgement
摘要
Abstract
1 Introduction
2 Copper and Copper Alloy Corrosion
2.1 Basics of Copper Corrosion
2.2 Corrosion Inhibitors
2.2.1 Inorganic Corrosion Inhibitors
2.2.2 Organic Inhibitors
2.3 Factors Affecting Corrosion Inhibition
2.3.1 Type of Substrate (Metal)
2.3.2 Electronic Structure of Inhibitors
2.3.3 Nature of the Corrosive Media
2.4 Corrosion Inhibitors Efficiency Evaluation Methods
2.4.1 Weight Loss Measurement
2.4.2 Potentiodynamic Polarization
2.4.3 Electrochemical Impedance Spectroscopy (EIS)
2.4.4 Scanning Electrochemical Microscopy (SECM)
2.4.5 Surface Analytical Methods
2.5 The Adsorption of Corrosion Inhibitor and its Isotherms
2.5.1 Langmuir Adsorption Isotherm
2.5.2 Freundlich Adsorption Isotherm
2.5.3 Temkin Adsorption Isotherm
2.5.4 Adsorption Energy
2.6 Problems in Current Research
2.7 Main Content of Current Research
3 Synergistic Inhibitive Effect of Cysteine and Iodide Ion on the CorrosionBehavior of Copper in Acidic Sulfate Solution
3.1 Introduction
3.2 Experimental
3.3 Results
3.3.1 Potentiodynamic Polarization Results
3.3.2 EIS Results
3.3.3 SEM Results
3.3.4 XPS Results
3.4 Discussion
3.5 Summary
4 The Protection Role of Cysteine for Cu-5Zn-5Al-1Sn Alloy Corrosion in 3.5wt.% NaCl Solution
4.1 Introduction
4.2 Experimental
4.3 Results
4.3.1 Potentiodynamic Polarization
4.3.2 Electrochemical Impedance Spectroscopy
4.3.3 SEM Analysis
4.3.4 XPS and Auger Results
4.4 Discussion
4.5 Summary
5 Effect of Immersion Time on the Corrosion of Cu-5Zn-5Al-1Sn Alloy andAnti-corrosion Activity of Cysteine in 3.5 wt.% NaCl Solution
5.1 Introduction
5.2 Experimental
5.3 Results
5.3.1 Electrochemical Impedance Spectroscopy
5.3.2 SEM/EDS Results
5.3.3 SERS(Surface Enhanced Raman Spectroscopy)
5.3.4 XPS Results
5.4 Discussion
5.5 Summary
6 General Conclusions
7 Innovation Points
References
Author's Resume and Research Results
Dissertation Data Set
【參考文獻】:
期刊論文
[1]In vitro biodegradability of Mg-2Gd-xZn alloys with different Zn contents and solution treatments[J]. Meng Zhang,Wei-Lin Deng,Xiao-Ning Yang,Yong-Kang Wang,Xiang-Yu Zhang,Rui-Qiang Hang,Kun-Kun Deng,Xiao-Bo Huang. Rare Metals. 2019(07)
[2]Corrosion resistance of Mg(OH)2/Mg-Al-layered double hydroxide coatings on magnesium alloy AZ31:influence of hydrolysis degree of silane[J]. Qing-Song Yao,Zhong-Chao Li,Zai-Meng Qiu,Fen Zhang,Xiao-Bo Chen,Dong-Chu Chen,Shao-Kang Guan,Rong-Chang Zeng. Rare Metals. 2019(07)
[3]Corrosion protection properties of vanadium films formed on zinc surfaces[J]. ZOU Zhongli,LI Ning,and LI Deyu Department of Applied Chemistry,School of Chemical Engineering & Technology,Harbin Institute of Technology,Harbin 150001,China. Rare Metals. 2011(02)
本文編號:3368173
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/3368173.html
最近更新
教材專著