放電銑削高效加工技術(shù)研究
[Abstract]:In the field of aerospace industry, in order to ensure the strength, rigidity and stability of the equipment in the extreme use environment, the overall weight of the equipment is reduced, the emission cost is reduced, and a large amount of hard processing materials such as titanium alloy, nickel-based high-temperature alloy and the like are adopted. In order to ensure the stability of the strength of the material, the blank of the material is large, and the weight ratio of the final part to the blank is generally lower than 20%, so that the material removal amount in the processing is large. The processing of the difficult-to-be-processed material mainly adopts the cutting processing, and the problem that the machining efficiency is low and the tool wear is serious is common in the cutting processing due to the excellent mechanical property of the difficult-to-be-processed material. In order to solve the above-mentioned problems in the processing of difficult-to-be-processed materials, the rough machining of the difficult-to-be-processed materials such as titanium alloy is proposed in this paper, so as to improve the processing efficiency and reduce the processing cost. by using the acoustic emission technique, the difference of the material etching process in different working media is studied by detecting the acoustic emission wave generated in the discharging process, and when the discharge in the air and the kerosene is found, only a severe pressure change is generated between the electrodes during the discharge breakdown, And when the water-based emulsion is used as the working medium, two severe pressure changes are generated between the electrodes at the end of the discharge breakdown and the discharge, so that the discharge of the corrosion-removing material is more favorable, and the processing efficiency is higher. The process of melting and etching of material in the process of spark discharge is studied by distinguishing the melting process and the etching process of the material, and the difference between the arc discharge and the spark discharge is analyzed according to the detected acoustic emission wave, and the etching conditions of the molten material during the arc discharge are discussed. On the basis of the existing three-axis machine tool body, a large current pulse power supply, a discharge detection module and an improved servo control system are introduced, and the integral structure of the discharge cutting machine is designed. The electrode motion servo control strategy based on the inter-pole average voltage is designed, and the stability of the discharge machining is improved. Through the analysis of the distribution of the discharge energy between the electrodes and the selection of the processing polarity, the influence of the electrode rotation and the high-pressure flushing liquid on the process of material erosion is analyzed and analyzed in combination with the experiment. In order to improve the inter-electrode working fluid effect, the discharge efficiency of the corrosion-removing particles is improved, and the working fluid flow field between the discharge and discharge machining processes is analyzed. The effect of the cutting thickness and the diameter of the electrode on the effect of the inter-electrode flushing is verified by the theoretical analysis, which is the effective flushing liquid and the auxiliary flushing liquid. And the separation type electrode matched with the outer ring hole is designed, so that the flushing effect of the inter-electrode discharge area is improved, the discharge efficiency of the etching and removing particles is improved, and the manufacturing cost of the electrode is reduced. The effect of flow velocity on the melting depth of a single-discharge workpiece was studied by establishing the temperature field model of the discharge point. In order to ensure the dimensional accuracy of the post-processed workpiece, the electrode loss and its compensation are studied. The machining advantage of graphite electrode was analyzed by contrast experiment, and the characteristic of electrode shape loss was studied. The effect of each processing parameter on the loss rate of the electrode is studied in this paper. It is found that the effect of single-layer cutting thickness on the electrode loss is the most significant, and the processing parameters for reducing the loss rate of the electrode are optimized according to the experimental results. the electrode loss is divided into side loss and axial loss, And the corresponding electrode loss compensation strategy is designed respectively. The compensation strategy of the electrode axial loss, which is combined with the timing of the effective discharge time statistics and the prediction compensation, is proposed, and the accuracy of the electrode loss compensation in the processing of complex workpieces is improved. The effects of various processing parameters on the material removal rate, surface roughness and the thickness of the heat-affected layer were studied by the process experiment, and the change of the surface quality of the material to be processed was analyzed. In this paper, the machining effect of the electric discharge machining and the machining of the normal forming electric discharge machining and the mechanical cutting is compared, and the advantages of the discharge machining on the high-efficiency rough machining of the difficult-to-be-processed material are analyzed. In order to ensure the machining quality of the final work piece, the mechanical cutting is introduced to finish machining, and the connection between the discharge and the mechanical cutting is planned. The processing technology is introduced into the processing of the aerospace hard-processing material, and the problem that the processing efficiency is low and the processing cost is high in the processing of the difficult-to-be-processed materials can be solved, and the purpose of improving the processing efficiency and reducing the processing cost is realized under the premise of ensuring the processing quality.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TG661;TG54
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘珊濤;中小電爐電極損耗原因和降耗[J];江蘇冶金;1991年01期
2 楚振斌;;介紹脈沖波形與電極損耗的關(guān)系[J];電加工;1979年03期
3 伍陽(yáng);李連周;;關(guān)于線(xiàn)切割介質(zhì)和線(xiàn)電極損耗問(wèn)題的探討[J];電加工;1980年02期
4 錢(qián)世準(zhǔn);;電極損耗檢測(cè)儀[J];玻璃纖維;1982年01期
5 陸紀(jì)培;伍世榮;;黑膜對(duì)電極損耗的影響[J];電加工;1982年05期
6 莫祖治;鮑子坤;王國(guó)林;陳寶嶺;;鋼打鋼控制電極損耗的探討[J];電加工;1987年03期
7 莫祖治;;鋼打鋼在雙閘流管電源中控制電極損耗的討論[J];電加工;1988年04期
8 孫炳華;;電加工的電極低損耗和添加劑的應(yīng)用[J];模具技術(shù);1988年06期
9 王更新;;國(guó)外線(xiàn)電極發(fā)展趨勢(shì)[J];電加工;1992年02期
10 盧智良;電流上升沿斜率對(duì)電極損耗影響[J];電加工;1994年02期
相關(guān)會(huì)議論文 前10條
1 龐述圣;;電極無(wú)損耗電源的研究[A];第八屆全國(guó)電加工學(xué)術(shù)年會(huì)論文集[C];1997年
2 邵樹(shù)淵;遲恩田;;表面處理對(duì)電極損耗的影響[A];第四屆全國(guó)電加工學(xué)術(shù)年會(huì)論文集[C];1992年
3 楊曉欣;蔣文英;;材料物理特性及所處極性對(duì)電極損耗的影響[A];第14屆全國(guó)特種加工學(xué)術(shù)會(huì)議論文集[C];2011年
4 邵樹(shù)淵;遲恩田;;表面石墨化處理對(duì)紫銅電極損耗的影響[A];第七屆全國(guó)電加工學(xué)術(shù)年會(huì)論文集[C];1993年
5 蔣文英;;電極損耗在線(xiàn)自動(dòng)測(cè)量及自動(dòng)補(bǔ)償[A];特種加工技術(shù)——2001年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)暨第九屆全國(guó)特種加工學(xué)術(shù)年會(huì)論文集[C];2001年
6 蔣文英;;電極損耗在線(xiàn)自動(dòng)測(cè)量及自動(dòng)補(bǔ)償[A];2001年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)暨第九屆全國(guó)特種加工學(xué)術(shù)年會(huì)論文集[C];2001年
7 陸紀(jì)培;許達(dá)哲;;電極表面電蝕凹坑及其損耗機(jī)理的探討[A];第五屆全國(guó)電加工學(xué)術(shù)年會(huì)論文集(電火花成型加工篇)[C];1986年
8 肖鹿;虞慧嵐;殷國(guó)強(qiáng);余祖元;李劍中;;基于去除材料面積的微細(xì)電火花電極損耗補(bǔ)償法[A];第14屆全國(guó)特種加工學(xué)術(shù)會(huì)議論文集[C];2011年
9 何云;周錦進(jìn);王續(xù)躍;;電火花加工硬質(zhì)合金電極損耗特性實(shí)驗(yàn)研究[A];第四屆全國(guó)電加工學(xué)術(shù)年會(huì)論文集[C];1992年
10 欒紀(jì)杰;李劍中;虞慧嵐;張余升;余祖元;;微細(xì)電火花三維加工中電極損耗補(bǔ)償新方法的研究[A];第13屆全國(guó)特種加工學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)博士學(xué)位論文 前3條
1 郭成波;放電銑削高效加工技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年
2 汪學(xué)斌;瀝青混凝土路面銑削轉(zhuǎn)子動(dòng)力學(xué)研究[D];長(zhǎng)安大學(xué);2017年
3 李皓;基于能量法CFRP切削機(jī)理與加工表面質(zhì)量表征方法研究[D];天津大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 孟潔;沖液式微細(xì)電火花銑削加工電極損耗預(yù)測(cè)與補(bǔ)償研究[D];哈爾濱工業(yè)大學(xué);2015年
2 嚴(yán)驊;航空發(fā)動(dòng)機(jī)葉片氣膜孔電火花加工的電極補(bǔ)償技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
3 代建東;機(jī)械磨削輔助電火花加工關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2015年
4 王勝超;超聲噴霧電火花加工方法及其工藝研究[D];哈爾濱工業(yè)大學(xué);2016年
5 趙成龍;超聲波輔助脈沖電鍍Ni-Al_2O_3復(fù)合材料制備EDM電極試驗(yàn)研究[D];山東理工大學(xué);2016年
6 邢俊;微小孔電火花—電解復(fù)合加工機(jī)床結(jié)構(gòu)設(shè)計(jì)及工具電極損耗研究[D];南京航空航天大學(xué);2016年
7 寧啟富;微細(xì)電火花銑削加工中的電極損耗補(bǔ)償研究[D];哈爾濱工業(yè)大學(xué);2014年
8 柳雅琪;基于模糊PID短電弧銑削加工電極損耗研究與優(yōu)化[D];新疆大學(xué);2017年
9 王博;數(shù)控短電弧銑削加工工具電極損耗規(guī)律研究[D];新疆大學(xué);2017年
10 朱康;電火花砂輪修整效率及電極損耗實(shí)驗(yàn)研究[D];西安工業(yè)大學(xué);2017年
,本文編號(hào):2504553
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2504553.html