型腔拐角銑削加工參數(shù)優(yōu)化與研究
[Abstract]:Mould is widely used in automobile industry, mobile phone industry, aerospace industry and other fields, so the NC machining accuracy of die is an important research object. Because of the thousands of changes in the shape of the product parts, the shape of the die is very different, especially when the die has more corners, it increases the difficulty of machining. The internal and external transition connections of these angles, such as sharp angle, obtuse angle and so on, make the milling force fluctuation produced by the cutting tool cause the workpiece trembling and the machining efficiency decrease in the milling process. In this paper, the machining efficiency and milling force of plane corner milling are studied. First of all, after consulting the research status at home and abroad, there are three ways to optimize machining at the corner: (1) in the control aspect of NC system, the control mode of NC system, such as the interpolation characteristic of motion trajectory, speed prospective preprocessing, acceleration and deceleration motion control, etc. (2) in the aspect of tool path, the optimal path is considered, and the optimization of tool walking is considered. (3) in terms of process parameters, feed speed, cutting depth and spindle speed are mainly considered. The advantages and disadvantages of the three methods are compared, and the process parameters are adopted in this paper. Secondly, the relationship between the position parameters of milling cutter and workpiece when milling plane corner is analyzed, and the real trajectory of cutter edge in milling process is obtained, and the mathematical expression of the corresponding parameter variables in the process of plane corner milling is given by analyzing its real trajectory. Aiming at the typical corner of die cavity, the contact between milling cutter and workpiece in different stages is analyzed by using plane geometry theory, and the changing trend of instantaneous contact angle between milling cutter and workpiece is obtained, and the instantaneous milling area of cutting edge in the process of corner machining is solved according to the change of instantaneous contact angle, and the formula for calculating the instantaneous milling area of cutter edge is established. Thirdly, the simulation software DEFORM-3D, is used to simulate the designed comparative parameter scheme, and the milling load curve is obtained. according to the fluctuation of the curve, the statistical analysis method is selected, and the abnormal data in the simulation results are eliminated by using the "3 蟽" principle in MATLAB to ensure the reliability of the simulation data. Through the derivation of the functional relationship between milling force, milling cutter torque and feed rate and milling cutter speed, the exponential formula is transformed into a linear formula, which provides a basis for data analysis. Through MATLAB software, the regression analysis of the simulation data is carried out, and the prediction model of milling force and milling torque is obtained, and the reliability of the data is verified by analyzing the linear correlation and linear fitting degree of the data. Finally, the basic theory, form and design flow of particle swarm optimization algorithm (POS) are introduced in detail. According to the basic form of the algorithm, the mathematical model of optimization objective function and constraint conditions is deduced. According to the basic flow, the optimization program is compiled in MATLAB software. The iterative operation results show that the machining time of milling parameters after corner milling optimization is 54.75% and 58.20% less than that of empirical parameter setting.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG547
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭龍燕;;基于粒子群算法的滾齒切削參數(shù)優(yōu)化研究[J];機(jī)械設(shè)計(jì)與制造;2016年09期
2 張君;張立強(qiáng);張凱;;面向連續(xù)短線段高速加工的圓弧轉(zhuǎn)接前瞻控制算法[J];中國機(jī)械工程;2015年15期
3 賈永鵬;景旭文;劉傳君;周宏根;;基于Deform-3D的船用柴油機(jī)機(jī)身深孔加工仿真研究[J];組合機(jī)床與自動(dòng)化加工技術(shù);2014年12期
4 王慧潔;李迎光;郝小忠;劉長青;高鑫;;飛機(jī)結(jié)構(gòu)件槽特征加工擺線螺旋復(fù)合刀軌生成方法[J];南京航空航天大學(xué)學(xué)報(bào);2014年05期
5 潘海鴻;楊增啟;陳琳;董海濤;黃炳瓊;譚華卿;;一種優(yōu)化軌跡段間銜接速度的自適應(yīng)前瞻控制[J];機(jī)械工程學(xué)報(bào);2015年05期
6 陶建明;宋愛平;易旦萍;;基于插值樣條的數(shù)控運(yùn)動(dòng)軌跡描述及平滑處理[J];組合機(jī)床與自動(dòng)化加工技術(shù);2014年01期
7 黃建;宋愛平;陶建明;尹瑋中;;數(shù)控運(yùn)動(dòng)相鄰加工段拐角的平滑轉(zhuǎn)接方法[J];上海交通大學(xué)學(xué)報(bào);2013年05期
8 吳春梅;;現(xiàn)代智能優(yōu)化算法的研究綜述[J];科技信息;2012年08期
9 樊驥;吳紅梅;;基于最優(yōu)化理論幾種算法的比較[J];才智;2011年09期
10 吳世雄;李開柱;;復(fù)雜型腔模具高速銑削拐角加工的研究現(xiàn)狀與分析[J];機(jī)械設(shè)計(jì)與制造;2010年09期
相關(guān)會(huì)議論文 前1條
1 張偉;李守智;高峰;劉振山;;幾種智能最優(yōu)化算法的比較研究[A];第二十四屆中國控制會(huì)議論文集(下冊(cè))[C];2005年
相關(guān)博士學(xué)位論文 前3條
1 張瑋;粒子群優(yōu)化算法研究及在陣列天線中的應(yīng)用[D];太原理工大學(xué);2010年
2 劉建華;粒子群算法的基本理論及其改進(jìn)研究[D];中南大學(xué);2009年
3 孫全平;高速銑削數(shù)控編程基礎(chǔ)算法的研究與實(shí)現(xiàn)[D];南京航空航天大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 劉飛;淬硬鋼模具典型型面銑削過程有限元仿真[D];哈爾濱理工大學(xué);2015年
2 史慧楠;基于銑削力預(yù)測的模具拐角加工誤差補(bǔ)償研究[D];哈爾濱理工大學(xué);2015年
3 李鵬宇;面向能效的數(shù)控銑削加工工藝參數(shù)優(yōu)化模型及方法研究[D];重慶大學(xué);2014年
4 賈永鵬;船用柴油機(jī)關(guān)鍵零件深孔加工機(jī)理及切削參數(shù)優(yōu)化技術(shù)研究[D];江蘇科技大學(xué);2014年
5 石壘;平底立銑刀加工模具拐角銑削力仿真研究[D];哈爾濱理工大學(xué);2014年
6 尹晶晶;基于模糊神經(jīng)網(wǎng)絡(luò)的抽油井沖次智能調(diào)節(jié)方法研究[D];東北大學(xué);2013年
7 李川;五節(jié)距銷軌輥鍛—模鍛復(fù)合成形工藝模擬研究[D];太原科技大學(xué);2013年
8 張傳海;長軸深孔件熱擠壓工藝設(shè)計(jì)及數(shù)值模擬[D];吉林大學(xué);2013年
9 宋健;基于DEFORM-3D的發(fā)動(dòng)機(jī)缸體鉆削仿真及切削參數(shù)優(yōu)化[D];大連理工大學(xué);2012年
10 李開柱;拐角高速銑削工藝試驗(yàn)及刀具軌跡優(yōu)化研究[D];廣東工業(yè)大學(xué);2012年
,本文編號(hào):2503246
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2503246.html