激光熔覆成形馬氏體不銹鋼應(yīng)力演化及調(diào)控機(jī)制
[Abstract]:The problem of residual stress is one of the most urgent problems to be solved in the manufacture and re-manufacture of large-scale commercial application of laser cladding. The temperature field evolution of the laser cladding process is inevitably accompanied by stress and strain evolution, resulting in a high level of residual stress in the part, the residual stress will affect the service performance and safety of the part, and even the part is scrapped due to cracking and deformation during the manufacturing process. Therefore, it is of very important scientific and practical significance to study the law and mechanism of stress evolution during laser cladding, and to realize the control of residual stress level and distribution. The structure, physical property and stress evolution of the martensitic stainless steel laser cladding process are studied in this paper. The influence rule and mechanism of the martensitic transformation on the evolution of the stress field are described. The method of adjusting the residual stress level and distribution by controlling the phase change is discussed. The high-strength and high-toughness Fe-based alloy powder for laser cladding can be heat-treated, and the powder is used for laser cladding and remanufacturing of large-scale compressor impeller. The physical property evolution of the martensitic stainless steel laser cladding process is studied, and the effect of the solid phase transition on the physical properties is analyzed. By using the MTS810 universal material experimental machine, the DIL801 thermal expansion instrument, the Setaram Setsys Evo synchronous thermal analyzer and the NETZSCH LFA427 laser flash-shooting method, the physical parameters of the martensitic stainless steel at different temperatures and phases are determined, the influence of the solid-state phase change on the parameters is analyzed, the specific parameters include the yield strength, Elastic modulus, plastic modulus, expansion coefficient, specific heat capacity, thermal conductivity, and the like. It is pointed out that the content of the chemical elements in the phase-change temperature and the high-temperature phase is a key factor which influences the size of the phase-change volume. The effect of the austenitizing condition, the cooling condition and the load on the solid phase transition in the laser cladding of the martensitic stainless steel was studied. The effect of different temperature cycle on the phase change dynamics coefficient, phase change point and the microstructure of the phase change is studied by the L78 RITA quenching phase change instrument. The results show that under the experimental conditions, the material at room temperature is the martensite structure, but the different temperature course can lead to the difference of the effective element content in the material. The stability of the austenite phase is different, which further affects the solid-state phase-change point and the phase-change kinetic coefficient. The effect of different applied loads on the martensitic transformation point, phase change dynamics coefficient and phase change plasticity is studied by Gleeble 3500, and when the external load is less than the yield strength, the phase change plasticity can be explained by the Greenwood-Joson mechanism. The effect of phase change plasticity and its effect on the stress evolution is discussed. Under the condition of constant external load of the larger value, the plastic strain of the phase change can far exceed the volume effect strain, and the laser cladding Fe-Cr-Ni-Mo-B-Si steel is a brittle material at room temperature, and the tensile test shows that the phase-change plasticity can make it obtain the elongation of up to 30%. In the process of laser cladding, the effect of phase change plasticity on the stress evolution is significant when the solid-state phase change occurs, but with the process of phase change, the stress level is reduced, and the effect of the phase change plasticity is gradually weakened. In this paper, the temperature field, the stress field and the solid-state phase change processing method for the laser cladding of the martensitic stainless steel are given, and the boundary, the initial conditions and the model parameters are also given. In this paper, the effect of stress on the phase-change dynamics coefficient and the phase-change temperature is considered, the phase-change volume effect and the treatment method of the phase-change plasticity are given, and the phase-change plastic parameters are given according to the Greenwood-Joson phase-change plastic mechanism. The relationship between the elastic modulus, yield strength, plastic modulus, expansion coefficient, specific heat capacity, thermal conductivity and density of the high and low temperature phase is given. The evolution of stress in single-channel and multi-layer multi-channel laser cladding is studied by means of macro-simulation and experimental combination. The evolution of the stress field in many cases, such as the solid phase transition, the solid phase transition, the solid phase transition at different temperature and the low-temperature pre-heating, is considered. The results show that the solid phase transition has a decisive influence on the final residual stress distribution. The solid-state phase change significantly reduces the longitudinal residual tensile stress, and even leads to the occurrence of residual compressive stress; in the case of the complete phase change, the lower the solid phase transition point, the smaller the residual tensile stress, and if the compressive stress is present, the greater the residual compressive stress; and if the material undergoes a solid-state phase change as a whole after the end of the cladding, Then the distribution of the stress field in the cladding and the surrounding area is good, the residual tensile stress is low, in which case, even if the solid-state phase change point is high, the leading role of the solid-state phase change on the residual stress is also significant. A method for characterising the residual tensile stress accumulation level of a laser cladding forming material is presented. -?. In the light of the residual stress problem of the laser cladding and remanufacturing of the large-scale compressor, the factors influencing the martensitic transformation point are discussed, and the heat-treated high-toughness Fe-Cr-Ni-Mo-Mn-Nb alloy powder for laser cladding is developed. Under the appropriate process conditions, the residual stress level in the cladding layer is low. The mechanical property of the deposited material is equivalent to that of the FV520B forging, and the material is used for laser cladding and remanufacturing of the large-scale compressor impeller.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG142.71;TG665
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬琳;原津萍;張平;趙軍軍;;多道激光熔覆溫度場(chǎng)的有限元數(shù)值模擬[J];焊接學(xué)報(bào);2007年07期
2 陳列;謝沛霖;;齒面激光熔覆中的防邊緣塌陷工藝研究[J];激光技術(shù);2007年05期
3 孫會(huì)來;趙方方;林樹忠;齊向陽;;激光熔覆研究現(xiàn)狀與發(fā)展趨勢(shì)[J];激光雜志;2008年01期
4 陳志坤;劉敏;曾德長;馬文有;;激光熔覆裂紋的產(chǎn)生原因及消除方法探究[J];激光雜志;2009年01期
5 鄭暉;韓志仁;陳江;王國棟;;采用激光熔覆方法校軸的試驗(yàn)研究[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年12期
6 朱晨光;孫耀寧;于青;;激光熔覆溫度場(chǎng)的數(shù)值模擬研究進(jìn)展[J];熱加工工藝;2012年08期
7 周思華;郭艷花;晁明舉;劉奎立;;金屬表面激光熔覆處理技術(shù)的研究[J];周口師范學(xué)院學(xué)報(bào);2013年05期
8 郭偉,徐慶鴻,田錫唐;激光熔覆的研究發(fā)展?fàn)顩r[J];宇航材料工藝;1998年01期
9 郭偉,徐慶鴻,田錫唐;激光熔覆的研究發(fā)展?fàn)顩r[J];宇航材料工藝;1998年02期
10 李必文,石世宏,王新林;激光熔覆化工閥門的實(shí)驗(yàn)與質(zhì)量控制[J];熱加工工藝;2000年01期
相關(guān)會(huì)議論文 前10條
1 鄧琦林;謝安寧;周廣才;;激光熔覆修復(fù)技術(shù)的基礎(chǔ)試驗(yàn)研究[A];2005年中國機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2005年
2 鄧琦林;謝安寧;周廣才;;激光熔覆修復(fù)技術(shù)的基礎(chǔ)試驗(yàn)研究[A];2005年中國機(jī)械工程學(xué)會(huì)年會(huì)第11屆全國特種加工學(xué)術(shù)會(huì)議專輯[C];2005年
3 鄧琦林;謝安寧;周廣才;;激光熔覆修復(fù)技術(shù)的基礎(chǔ)試驗(yàn)研究[A];2005年中國機(jī)械工程學(xué)會(huì)年會(huì)論文集第11屆全國特種加工學(xué)術(shù)會(huì)議專輯[C];2005年
4 張萬紅;方亮;趙剛;;液相分散沉降法制備激光熔覆預(yù)涂涂層的研究[A];第五屆全國表面工程學(xué)術(shù)會(huì)議論文集[C];2004年
5 陳暢源;鄧琦林;葛志軍;;激光熔覆中的應(yīng)力研究[A];上海市激光學(xué)會(huì)2005年學(xué)術(shù)年會(huì)論文集[C];2005年
6 鄧琦林;;艦船關(guān)鍵零件的激光熔覆修復(fù)[A];第13屆全國特種加工學(xué)術(shù)會(huì)議論文集[C];2009年
7 王明娣;劉秀波;郭開波;宋成法;傅戈雁;石世宏;;激光熔覆成形件的應(yīng)力分析與裂紋控制[A];第14屆全國特種加工學(xué)術(shù)會(huì)議論文集[C];2011年
8 王永峰;田欣利;薛春芳;;送粉式激光熔覆能量利用率的分析模型[A];第十屆全國特種加工學(xué)術(shù)會(huì)議論文集[C];2003年
9 黃延祿;楊永強(qiáng);;雙方程邊界耦合法激光熔覆傳質(zhì)過程數(shù)值模擬[A];中西南十省區(qū)(市)焊接學(xué)會(huì)聯(lián)合會(huì)第九屆年會(huì)論文集[C];2006年
10 劉繼常;;激光熔覆工藝?yán)碚撆c試驗(yàn)研究[A];第15屆全國特種加工學(xué)術(shù)會(huì)議論文集(下)[C];2013年
相關(guān)重要報(bào)紙文章 前4條
1 翟揚(yáng);激光熔覆硼、鈦材料市場(chǎng)海闊天空[N];中國有色金屬報(bào);2003年
2 湯兆宏;激光熔覆專利技術(shù)修復(fù)綏中電廠80萬千瓦汽輪機(jī)圍帶鉚釘損傷[N];中國電力報(bào);2008年
3 記者 趙靜;激光熔覆術(shù)成功再造煤礦機(jī)械[N];中國煤炭報(bào);2013年
4 本報(bào)記者 湯兆宏;成功修復(fù)寶鋼自備電廠35萬千瓦汽輪機(jī)缸體[N];中國電力報(bào);2008年
相關(guān)博士學(xué)位論文 前10條
1 趙彥華;KMN鋼壓縮機(jī)葉片激光熔覆修復(fù)及后續(xù)加工特性研究[D];山東大學(xué);2015年
2 閆曉玲;激光熔覆再制造零件超聲檢測(cè)數(shù)值模擬與實(shí)驗(yàn)研究[D];北京理工大學(xué);2015年
3 方金祥;激光熔覆成形馬氏體不銹鋼應(yīng)力演化及調(diào)控機(jī)制[D];哈爾濱工業(yè)大學(xué);2016年
4 熊征;激光熔覆強(qiáng)化和修復(fù)薄壁型零部件關(guān)鍵技術(shù)基礎(chǔ)研究[D];華中科技大學(xué);2009年
5 黃鳳曉;激光熔覆和熔覆成形鎳基合金的組織與性能研究[D];吉林大學(xué);2011年
6 張慶茂;送粉激光熔覆應(yīng)用基礎(chǔ)理論的研究[D];中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所;2000年
7 張三川;送粉激光熔覆陶瓷摻雜復(fù)合涂層技術(shù)及涂層成形機(jī)理研究[D];鄭州大學(xué);2002年
8 李明喜;鈷基合金及其納米復(fù)合材料激光熔覆涂層研究[D];東南大學(xué);2004年
9 鄭敏;鈦合金表面激光熔覆制備生物陶瓷涂層及其生物活性研究[D];蘭州理工大學(xué);2008年
10 王明娣;基于光內(nèi)送粉的激光熔覆快速制造機(jī)理與工藝研究[D];南京航空航天大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 許波;面向綠色再制造的單道激光熔覆幾何特征的研究[D];南京航空航天大學(xué);2011年
2 盧云龍;激光熔覆硅化物三元合金涂層的組織與性能研究[D];上海工程技術(shù)大學(xué);2015年
3 付志凱;輪軌材料激光溶覆Fe基合金涂層的微觀組織與磨損性能研究[D];西南交通大學(xué);2015年
4 李培源;鋼材表面非晶化工藝與性能研究[D];南京理工大學(xué);2015年
5 杭小琳;激光銑削對(duì)激光熔覆成形件的整形機(jī)理和試驗(yàn)研究[D];蘇州大學(xué);2015年
6 梁斌;基于大功率半導(dǎo)體激光熔覆的環(huán)模再制造研究[D];燕山大學(xué);2015年
7 相占鳳;添加固體潤滑劑hBN的鈦合金激光熔覆高溫耐磨復(fù)合涂層研究[D];蘇州大學(xué);2015年
8 鄧居軍;磁化—激光熔覆復(fù)合技術(shù)強(qiáng)化與修復(fù)零部件表面性能的研究[D];江西理工大學(xué);2015年
9 艾銘杰;Cr12MoV模具鋼表面激光熔覆層組織及性能研究[D];山東大學(xué);2015年
10 趙文雨;2Cr12MoV表面激光熔覆Stellite 6涂層的組織及性能研究[D];上海交通大學(xué);2015年
,本文編號(hào):2488162
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2488162.html