激光掩膜微細(xì)電解加工技術(shù)研究
[Abstract]:With the rapid development of MEMS (micro-electro-mechanical system), there are more and more demand for micro-metal devices, especially small-sized metal parts with a size between 100 & mu; m ~ 1 mm, and how to realize the rapid processing of micro-parts is one of the many technical problems at home and abroad. In this paper, the laser mask and the micro-electrolysis processing technology are combined, and the micro-electrolysis composite processing technology of the optical fiber laser mask is put forward. first, using a high-energy density laser beam of an optical fiber pulse laser to make a laser mask on the surface of the stainless steel 304 workpiece, the generated mask has a corrosion-resistant protection characteristic, and then the surface of the 304 stainless steel workpiece with the laser mask pattern is localized and removed by the micro-electrolysis processing, And the micro-cavity processing is realized. The process can avoid the fabrication of the micro-electrode in the ultra-narrow pulse micro-electrolysis process, and can solve the problem that the electrolytic processing is fixed without using a photoetching technology to make a mask. The mechanism of micro-electrolysis of laser mask is studied. The corrosion resistance of the laser mask layer was studied by X-ray photoelectron spectroscopy, X-ray diffraction and polarization curve analysis on the surface characteristics of the laser-mask stainless steel workpiece. The oxide film of Cr, Fe and the like is formed on the surface of 304 stainless steel by a laser mask, and the oxide film has the characteristics of corrosion resistance, and a mask protection function is used in the subsequent micro-electrolysis to realize the micro-electrolysis localization processing. A set of laser-mask micro-electrolysis processing device was developed. The effects of different laser power, processing voltage, duty cycle and electrolyte concentration on the processing effect were studied by the process contrast test. The processing conditions and the electric processing parameters are optimized, a plurality of laser-mask micro-electrolysis processing is carried out, and a cavity part with a depth of about 30 mu m is processed, so that the micro-part is high-efficiency and low-cost processing is realized.
【學(xué)位授予單位】:佳木斯大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG662
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張朝陽(yáng);秦昌亮;馮欽玉;印潔;毛衛(wèi)平;;脈沖激光電化學(xué)復(fù)合加工的試驗(yàn)研究[J];機(jī)械科學(xué)與技術(shù);2015年07期
2 張朝陽(yáng);秦昌亮;馮欽玉;曾永彬;蔡明霞;毛衛(wèi)平;蘇純;;脈沖激光電化學(xué)復(fù)合的定域性研究及三維微細(xì)刻蝕加工[J];機(jī)械工程學(xué)報(bào);2014年23期
3 張堅(jiān);李建運(yùn);趙龍志;趙明娟;;激光表面技術(shù)數(shù)值模擬研究現(xiàn)狀[J];鑄造技術(shù);2013年04期
4 王耀民;張朝陽(yáng);李中洋;毛衛(wèi)平;;納秒激光電化學(xué)復(fù)合掩模的微細(xì)加工[J];微納電子技術(shù);2012年05期
5 錢(qián)雙慶;曲寧松;朱荻;李寒松;曾永彬;;電解轉(zhuǎn)印表面織構(gòu)的定域性研究[J];納米技術(shù)與精密工程;2011年02期
6 陳輝;王玉魁;王振龍;趙萬(wàn)生;;微細(xì)槽的電化學(xué)銑削加工[J];納米技術(shù)與精密工程;2011年01期
7 杜海濤;曲寧松;李寒松;錢(qián)雙慶;;電解轉(zhuǎn)印法加工凹坑陣列結(jié)構(gòu)試驗(yàn)研究[J];機(jī)械工程學(xué)報(bào);2010年03期
8 馬曉宇;李勇;;間歇回退對(duì)微細(xì)電解加工的影響分析及實(shí)驗(yàn)研究[J];航天制造技術(shù);2009年06期
9 宋曼;曲寧松;錢(qián)雙慶;李寒松;楊培劍;;微小凹坑陣列的電解轉(zhuǎn)印加工試驗(yàn)研究[J];電加工與模具;2009年05期
10 張平;馬琳;趙軍軍;原津萍;胡家?guī)?;激光熔覆數(shù)值模擬過(guò)程中的熱源模型[J];中國(guó)表面工程;2006年S1期
相關(guān)博士學(xué)位論文 前2條
1 龍芋宏;激光電化學(xué)微加工機(jī)理與實(shí)驗(yàn)研究[D];華中科技大學(xué);2007年
2 方宇;液中放電沉積關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2006年
,本文編號(hào):2486124
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2486124.html