基于特征的復(fù)雜結(jié)構(gòu)件數(shù)控加工刀具狀態(tài)實(shí)時(shí)辨識(shí)方法
[Abstract]:Signal monitoring based on cutting force and vibration is an effective method for real-time identification of cutting tool status in NC machining. The monitoring signal in NC machining process is not only related to the tool state itself, but also affected by the geometric shape of the workpiece. Because of the influence of process parameters and other factors, the accuracy of tool state identification in NC machining process is poor, especially for complex structural components which are multi-product and small batch production, the above problems are more serious. In order to solve the above problems, the real-time identification method of NC machining tool status based on feature is deeply studied in this paper. The main achievements of this paper are as follows: (1) the commonly used sensors of NC machining tool condition monitoring are analyzed, and the cutting force is selected as the signal of tool condition monitoring in this paper. The influence of machining features on cutting force monitoring signal is analyzed by experimental method, and then a feature-based tool state identification method for NC machining of complex structural components is proposed, and a feature-based tool state identification information model is established. The advantage of identifying tool state based on feature is analyzed. (2) the monitoring signal in NC machining is not only related to tool state, but also affected by workpiece geometry and process parameters. The influence of machining feature and tool state on monitoring signal is analyzed. The correlation between machining feature geometric shape monitoring signal and machining feature is established, and the real-time correlation between tool condition monitoring signal and machining feature is realized. The tool state identification can be classified according to different machining features. (3) the feature-based monitoring signal processing method and the tool state real-time identification method are studied. According to the machining features of different aircraft structures, different signal sensitive quantities are extracted, and the tool state identification vector is constructed by combining the geometric information and process information of machining features. The tool state identification vectors are classified by K-Means clustering algorithm. A feature-based tool state identification system for NC machining of complex frame members is developed. (4) A real-time tool state identification system based on CATIA/CAA and LABVIEW for NC machining of complex frame members is developed and verified in experiments.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG659
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 閆杉;胡小鋒;劉穎超;張潔;;輪槽半精銑刀壽命自適應(yīng)預(yù)測(cè)方法研究[J];組合機(jī)床與自動(dòng)化加工技術(shù);2016年09期
2 朱紹維;李衛(wèi)東;湯立民;杜麗;;ARTIS刀具監(jiān)控系統(tǒng)在航空結(jié)構(gòu)件銑削加工中的應(yīng)用[J];中國(guó)機(jī)械工程;2016年15期
3 朱紹維;牟文平;湯立民;杜麗;;融合工藝信息的復(fù)雜零件加工狀態(tài)識(shí)別方法[J];中國(guó)機(jī)械工程;2016年11期
4 劉宇;汪惠芬;劉庭煜;;一種基于多特征和支持向量機(jī)的刀具磨損狀態(tài)識(shí)別技術(shù)[J];制造業(yè)自動(dòng)化;2016年05期
5 周鑫;李迎光;劉浩;劉長(zhǎng)青;;基于特征的飛機(jī)復(fù)雜結(jié)構(gòu)件切削力快速預(yù)測(cè)與評(píng)價(jià)方法[J];中國(guó)機(jī)械工程;2015年07期
6 黎明;李迎光;劉長(zhǎng)青;劉浩;;基于特征的飛機(jī)結(jié)構(gòu)件加工狀態(tài)監(jiān)測(cè)方法[J];航空制造技術(shù);2015年05期
7 張棟梁;莫蓉;孫惠斌;李春磊;苗春生;李冀;;基于混沌時(shí)序分析方法與支持向量機(jī)的刀具磨損狀態(tài)識(shí)別[J];計(jì)算機(jī)集成制造系統(tǒng);2015年08期
8 姜振喜;孫杰;李國(guó)超;賈興民;李劍峰;;TC4銑削加工的刀具磨損與切削力和振動(dòng)關(guān)系研究[J];兵工學(xué)報(bào);2015年01期
9 袁筱賦;;金屬機(jī)床切削刀具破損產(chǎn)生的原因及對(duì)策[J];今日科苑;2012年24期
10 陳群濤;石新華;邵華;;基于振動(dòng)信號(hào)EMD和ICA的刀具破損識(shí)別[J];工具技術(shù);2012年12期
相關(guān)博士學(xué)位論文 前4條
1 李威霖;車(chē)銑刀具磨損狀態(tài)監(jiān)測(cè)及預(yù)測(cè)關(guān)鍵技術(shù)研究[D];西南交通大學(xué);2013年
2 關(guān)山;基于聲發(fā)射信號(hào)多特征分析與融合的刀具磨損分類(lèi)與預(yù)測(cè)技術(shù)[D];吉林大學(xué);2011年
3 高宏力;切削加工過(guò)程中刀具磨損的智能監(jiān)測(cè)技術(shù)研究[D];西南交通大學(xué);2005年
4 熊四昌;基于計(jì)算機(jī)視覺(jué)的刀具磨損狀態(tài)監(jiān)測(cè)技術(shù)的研究[D];浙江大學(xué);2003年
相關(guān)碩士學(xué)位論文 前7條
1 柳洋;刀具磨損在線監(jiān)測(cè)研究[D];華中科技大學(xué);2014年
2 封海蕊;基于數(shù)字圖像的刀具磨損狀態(tài)監(jiān)測(cè)研究[D];浙江理工大學(xué);2013年
3 張吉林;基于機(jī)器視覺(jué)的銑削刀具磨損監(jiān)測(cè)技術(shù)研究[D];南京航空航天大學(xué);2013年
4 張石磊;飛機(jī)結(jié)構(gòu)件槽特征數(shù)控加工自動(dòng)工藝決策方法[D];南京航空航天大學(xué);2012年
5 謝劍峰;基于聲發(fā)射的銑刀破損監(jiān)測(cè)研究[D];上海交通大學(xué);2011年
6 湯為;基于聲發(fā)射法的銑刀磨損狀態(tài)識(shí)別研究[D];上海交通大學(xué);2009年
7 莊子杰;基于聲發(fā)射和振動(dòng)法的刀具磨損狀態(tài)檢測(cè)研究[D];上海交通大學(xué);2009年
,本文編號(hào):2441920
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2441920.html