適用于大橢圓高速車削的刀架系統(tǒng)關(guān)鍵技術(shù)研究
[Abstract]:For heavy-duty engine, the piston is subjected to side pressure, high temperature, high load and so on in the process of working, resulting in expansion deformation. In order to improve the fitting clearance between piston and cylinder wall, the outer circle section of high power piston is designed as a large ellipticity composite line. The complicated shape and high precision requirements of high frequency response greatly increase the machining difficulty of the outer circular surface. It also improves the real-time control requirements of the control system. At present, the widely used machining method is the full digital control lathe based on PC. The key technologies for high-speed turning with high ellipticity include: (1) combined elliptic trajectory planning based on minimum acceleration impact and (2) PID intelligent self-tuning technology for high-frequency loudspeaker drive system. In this paper, the machining trajectory optimization and control technology for linear servo tool holder system suitable for high-speed turning with high ellipticity are studied in order to improve the fast tracking performance of servo tool holder system and reduce the machining error. The main research contents are as follows: (1) the characteristics and mathematical models of the piston outer circle are analyzed and summarized, and the shortcomings of the existing design methods for the large ellipticity outer circle with the section of the composite profile are pointed out. Three optimization methods of profile reconstruction based on minimal impact are proposed, and their rationality is analyzed theoretically by MATLAB. (2) in order to improve the quick response ability of the system and avoid the adverse effect on machining accuracy caused by the feedback lag of the system and so on, the optimization method of profile reconstruction based on minimal impact is proposed. Based on the feed-forward idea, acceleration feedforward is added to the three-loop control of linear servo tool holder to compensate the error, and its feasibility is verified by simulation. (3) A fuzzy adaptive PID controller is designed. Combining the traditional PID control with the fuzzy control in the intelligent control algorithm, the self-adjusting parameters of the position loop and the velocity loop in the three-loop control of the linear servo tool holder are realized. It is compared with the traditional PID control mode. (4) the hardware structure and motion control mode of the linear servo tool holder system suitable for large ellipse turning are introduced. Through no-load machining experiments, it is verified that the acceleration feedforward compensation of the current loop is beneficial to improve the fast response ability of the system. Through the actual turning experiment, it is proved that the deleted point reconstruction optimization line can effectively reduce the impact and improve the machining accuracy. It is proved that the research content has practical application significance.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG519.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉祖堯;;介紹一種圓鋼橢圓度的檢驗(yàn)工具[J];鋼鐵;1955年08期
2 董昌樂;聶翠平;韓新利;郝寧;;基于有限元法對(duì)小橢圓度連續(xù)管擠毀壓力研究[J];石油礦場(chǎng)機(jī)械;2010年11期
3 蔡祥勝;高壓不銹鋼小R彎頭橢圓度的選定[J];核動(dòng)力工程;1981年05期
4 江旭輝;;測(cè)量?jī)?nèi)孔橢圓度的保持架[J];機(jī)械工人.冷加工;1983年08期
5 陳幼良;;解決大盆內(nèi)孔橢圓度臥車改立磨[J];航空工藝技術(shù);1981年10期
6 張九菊;段夢(mèng)蘭;馬建敏;胡顯偉;;基于深海卷管鋪設(shè)的海管橢圓度分析[J];應(yīng)用數(shù)學(xué)和力學(xué);2013年06期
7 陳勇;練章華;張海清;王延民;李孝軍;;考慮初始橢圓度的套管抗載能力分析[J];石油礦場(chǎng)機(jī)械;2007年07期
8 楊斌;練章華;史勇;姚輝前;李玉飛;;壁厚橢圓度缺陷對(duì)膨脹套管性能的影響[J];石油礦場(chǎng)機(jī)械;2008年10期
9 卜銀坤;談?wù)劆t膽橢圓度對(duì)鍋爐安全運(yùn)行的影響[J];勞動(dòng)保護(hù);1981年09期
10 唐超;;內(nèi)壓容器橢圓度最大允許值研究[J];化工裝備技術(shù);1996年03期
相關(guān)會(huì)議論文 前5條
1 肖秀華;;活塞外側(cè)形狀的橢圓度[A];四川省汽車工程學(xué)會(huì)第一屆二次年會(huì)論文集[C];1991年
2 岳欠杯;劉巨保;何春生;;基于橢圓度及壁厚參數(shù)的連續(xù)油管低周疲勞壽命預(yù)測(cè)[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
3 楊國(guó)義;壽比南;;筒體橢圓度對(duì)外壓失穩(wěn)臨界壓力的影響分析[A];第五屆全國(guó)壓力容器學(xué)術(shù)會(huì)議論文集[C];2001年
4 曲鋒;朱萬彬;王健;曹洪超;王勛;;基于LabVIEW的圓弧橢圓度檢測(cè)系統(tǒng)實(shí)現(xiàn)[A];高精度幾何量光電測(cè)量與校準(zhǔn)技術(shù)研討會(huì)論文集[C];2008年
5 熊路;李天勻;朱翔;;基于雙Fourier級(jí)數(shù)表達(dá)的橢圓柱殼自由振動(dòng)特性分析研究[A];第十四屆船舶水下噪聲學(xué)術(shù)討論會(huì)論文集[C];2013年
相關(guān)重要報(bào)紙文章 前1條
1 由然 整理;回轉(zhuǎn)窯橢圓度對(duì)耐材損毀速度的影響[N];中國(guó)建材報(bào);2013年
相關(guān)博士學(xué)位論文 前1條
1 梁鵬;橢圓軌跡成形方法與控制技術(shù)研究[D];山東大學(xué);2014年
相關(guān)碩士學(xué)位論文 前5條
1 張睿棟;橢圓度對(duì)套管擠毀強(qiáng)度的影響分析[D];西安石油大學(xué);2015年
2 景映東;缺陷內(nèi)襯屈曲性能研究[D];中國(guó)地質(zhì)大學(xué)(北京);2016年
3 王春陽;適用于大橢圓高速車削的刀架系統(tǒng)關(guān)鍵技術(shù)研究[D];山東大學(xué);2017年
4 杜保存;大口徑供熱直埋橢圓彎頭的有限元分析[D];太原理工大學(xué);2012年
5 段麗;高溫高壓管線彎頭應(yīng)力變化及其影響因素的分析[D];華北電力大學(xué)(北京);2006年
,本文編號(hào):2440198
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2440198.html