天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 鑄造論文 >

滾齒加工切削力分析及切削參數(shù)優(yōu)化

發(fā)布時(shí)間:2019-01-13 08:43
【摘要】:制造業(yè)的快速發(fā)展使人們的生活水平不斷提高,而人們對(duì)產(chǎn)品的多樣性、個(gè)性化需求又刺激制造業(yè)不斷革新技術(shù),創(chuàng)造新產(chǎn)品。齒輪作為制造業(yè)中基礎(chǔ)的傳動(dòng)零件之一,需求量日益增大,精度及性能要求也不斷提高。滾齒切削是齒輪加工的主要方式之一,在滿足產(chǎn)品需求的基礎(chǔ)上生產(chǎn)效率更高。由于滾齒過(guò)程為復(fù)雜的多刃斷續(xù)切削過(guò)程,過(guò)程復(fù)雜性決定了需要尋求更加有效的方法對(duì)其切削加工機(jī)理進(jìn)行分析,以了解滾齒切削參數(shù)對(duì)切削力、切削溫度以及刀具磨損的影響規(guī)律,進(jìn)而為滾齒技術(shù)的發(fā)展奠定基礎(chǔ),使傳統(tǒng)的滾齒切削方式向著更為節(jié)能、高效的方向發(fā)展。本文基于滾齒過(guò)程中滾刀和工件的幾何運(yùn)動(dòng)關(guān)系,以SolidWorks軟件為平臺(tái),構(gòu)建滾齒加工幾何仿真模型,模擬滾齒切削過(guò)程,從而為建立有限元仿真的三維模型、計(jì)算分析滾齒過(guò)程中的切削力奠定基礎(chǔ)。利用遺傳算法對(duì)滾齒切削參數(shù)進(jìn)行優(yōu)化,降低生產(chǎn)成本,提高加工效率,減少由于試切造成的資源浪費(fèi),將企業(yè)效益最大化。本文的主要研究工作如下:首先,運(yùn)用滾齒運(yùn)動(dòng)關(guān)系數(shù)學(xué)模型,分析滾刀刀齒獲得的切屑的形狀和大小。利用加工過(guò)程中滾刀和工件的運(yùn)動(dòng)關(guān)系,分別建立二維滾齒狀態(tài)和三維滾齒狀態(tài)下的數(shù)學(xué)模型,使用MATLAB求解滾刀刀齒在二維和三維狀態(tài)下運(yùn)動(dòng)軌跡上的坐標(biāo)點(diǎn),分析滾刀刀齒每齒切削面積;把KYTool作為SolidWorks插件,使用C+語(yǔ)言對(duì)SolidWorks進(jìn)行二次開發(fā),使其可以按照指令利用刀齒空間坐標(biāo)點(diǎn)進(jìn)行幾何過(guò)程仿真,研究滾刀刀齒的每齒切削體積,分析刀齒切削刃的切削狀態(tài);同時(shí)利用SolidWorks二次開發(fā)法提取三維切屑模型表面上點(diǎn)的坐標(biāo),并驗(yàn)證提取結(jié)果的有效性。其次,利用SolidWorks幾何仿真得到的工件模型和切屑模型,分別運(yùn)用解析法和有限元法計(jì)算滾齒切削力。前者通過(guò)提取切屑三維模型表面上點(diǎn)的空間坐標(biāo),利用切屑形狀,以微元法計(jì)算切削力;后者將工件三維模型導(dǎo)入ABAQUS中進(jìn)行滾齒仿真,計(jì)算滾齒切削力,并將二者的結(jié)果進(jìn)行對(duì)比分析,驗(yàn)證計(jì)算結(jié)果的正確性。采用有限元仿真分析了滾齒過(guò)程中滾齒切削參數(shù)對(duì)切削力的影響,為切削參數(shù)的選取提供理論依據(jù)。最后,對(duì)滾齒過(guò)程中的切削參數(shù)和切削功率進(jìn)行研究。設(shè)計(jì)了滾齒切削實(shí)驗(yàn)測(cè)量滾齒切削功率,將實(shí)驗(yàn)得到的平均切削功率與解析計(jì)算得到的平均切削功率進(jìn)行對(duì)比,驗(yàn)證計(jì)算結(jié)果的正確性;利用遺傳算法對(duì)滾齒切削參數(shù)進(jìn)行多目標(biāo)優(yōu)化,使?jié)L齒達(dá)到單件加工成本最低,加工時(shí)間最短的目的。本研究為進(jìn)一步掌握滾齒切削機(jī)理提供技術(shù)支持,為新的滾齒加工方式—高速干式滾齒指出了新的研究方法,可以方便、快捷的為滾齒有限元仿真提供精確的三維模型,從而實(shí)現(xiàn)"以滾代磨"。
[Abstract]:With the rapid development of manufacturing industry, people's living standard is improving constantly, and people's diversity of products and individualized demand stimulate manufacturing industry to innovate technology and create new products. As one of the basic transmission parts in the manufacturing industry, the demand for gear is increasing day by day, and the precision and performance requirements are also improved. Gear hobbing cutting is one of the main ways of gear machining, and the production efficiency is higher on the basis of satisfying the demand of products. Because the hobbing process is a complex multi-blade intermittent cutting process, the complexity of the process makes it necessary to find a more effective method to analyze the cutting mechanism in order to understand the cutting force of the hobbing cutting parameters. The influence of cutting temperature and tool wear has laid a foundation for the development of hobbing technology and made the traditional hobbing cutting more energy efficient and efficient. Based on the geometric motion relation between hob and workpiece in the process of hobbing, the geometric simulation model of hobbing machining is constructed on the platform of SolidWorks software, and the process of hobbing cutting is simulated in order to establish the three-dimensional model of finite element simulation. Calculation and analysis of the cutting force in the hobbing process lay the foundation. Genetic algorithm is used to optimize the hobbing cutting parameters to reduce the production cost, improve the processing efficiency, reduce the waste of resources caused by trial cutting, and maximize the benefit of the enterprise. The main work of this paper is as follows: firstly, the shape and size of chip obtained from hob teeth are analyzed by using the mathematical model of hobbing motion relationship. Based on the kinematic relationship between hob and workpiece in machining process, the mathematical models of 2-D and 3D hobbing states are established, and the coordinate points on the motion trajectory of hob teeth in 2D and 3D states are solved by using MATLAB. The cutting area of each tooth of hob teeth is analyzed. Taking KYTool as the SolidWorks plug-in, the SolidWorks is redeveloped with C language, which can be used to simulate the geometric process by using the spatial coordinate points of the cutter teeth according to the instruction, to study the cutting volume of each tooth of the hob teeth, and to analyze the cutting state of the cutting edge of the cutter teeth. At the same time, the coordinates of the points on the surface of the 3D chip model are extracted by using the SolidWorks secondary development method, and the validity of the extracted results is verified. Secondly, the workpiece model and chip model obtained by SolidWorks geometric simulation are used to calculate the cutting force of hobbing gear by analytic method and finite element method, respectively. In the former, the spatial coordinates of the points on the surface of the chip 3D model are extracted, and the cutting force is calculated by the micro-element method using the chip shape. The latter introduces the 3D model of workpiece into ABAQUS for hobbing simulation, calculates the cutting force of hobbing, and compares the results of the two to verify the correctness of the calculation. The influence of hobbing parameters on cutting force is analyzed by finite element simulation, which provides a theoretical basis for the selection of cutting parameters. Finally, the cutting parameters and cutting power in the hobbing process are studied. The experiment of hobbing cutting is designed to measure the cutting power of the hobbing teeth. The experimental average cutting power is compared with the analytical average cutting power to verify the correctness of the calculation results. The multi-objective optimization of hobbing parameters is carried out by genetic algorithm (GA), which makes the hobbing achieve the goal of minimum cost and shortest processing time. This study provides technical support for further mastering the mechanism of hobbing, and points out a new research method for the new hobbing machine-high-speed dry hobbing, which can provide accurate 3D model for the finite element simulation of hobbing. In order to achieve "rolling instead of grinding."
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG612

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 周華,倪谷來(lái);滾齒機(jī)掛輪計(jì)算機(jī)選取法的改進(jìn)[J];上海水產(chǎn)大學(xué)學(xué)報(bào);2000年04期

2 劉其洪;基于開放的滾齒機(jī)掛輪選配系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J];機(jī)械;2002年04期

3 王細(xì)洋;滾齒機(jī)掛輪自動(dòng)選配系統(tǒng)[J];機(jī)床與液壓;2002年06期

4 趙文波,惠軍濤,鄧小玲;滾齒機(jī)差動(dòng)掛輪選擇程序[J];礦山機(jī)械;2003年06期

5 陳燕 ,徐東風(fēng) ,張宇宙;計(jì)算機(jī)輔助選擇滾齒機(jī)掛輪[J];現(xiàn)代機(jī)械;2003年04期

6 ;我國(guó)最大的滾齒機(jī)制造成功[J];中國(guó)有色冶金;2005年02期

7 魏贛龍,付津平;累加計(jì)算法配滾齒掛輪[J];機(jī)械工人.冷加工;2005年03期

8 馬國(guó)亮,曹秋霞;滾齒機(jī)差動(dòng)掛輪計(jì)算方法[J];煤礦機(jī)電;2005年03期

9 左倩;;滾齒機(jī)爆刀原因初探[J];工具技術(shù);2009年12期

10 鄭春云;;巧妙解決5330滾齒機(jī)的搬遷定位難題[J];黑龍江冶金;2010年04期

相關(guān)會(huì)議論文 前3條

1 劉忠常;是復(fù)慶;;瑞士米克隆滾齒機(jī)的修理(MIKRON 102.05 EP小模數(shù)高精度萬(wàn)能滾齒機(jī))[A];設(shè)備維修與改造技術(shù)論文集[C];2000年

2 張崴漢;姜春雨;姬國(guó)棟;;滾齒機(jī)分度傳動(dòng)鏈的誤差分析與計(jì)算[A];十三省區(qū)市機(jī)械工程學(xué)會(huì)第五屆科技論壇論文集[C];2009年

3 陳就;劉豐林;徐曉剛;;三軸數(shù)控聯(lián)動(dòng)滾齒機(jī)YK3125總體設(shè)計(jì)[A];2010年重慶市機(jī)械工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2010年

相關(guān)博士學(xué)位論文 前6條

1 陳永鵬;高速干切滾齒多刃斷續(xù)切削空間成形模型及其基礎(chǔ)應(yīng)用研究[D];重慶大學(xué);2015年

2 陶曉杰;滾齒誤差及補(bǔ)償技術(shù)研究[D];合肥工業(yè)大學(xué);2006年

3 劉潤(rùn)愛;零傳動(dòng)滾齒機(jī)關(guān)鍵技術(shù)研究與應(yīng)用[D];重慶大學(xué);2006年

4 高志強(qiáng);ZFWZ12型滾齒機(jī)數(shù)控改造的研究[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2008年

5 陳國(guó)榮;面向服務(wù)的滾齒機(jī)故障診斷模式及關(guān)鍵支撐技術(shù)研究[D];重慶大學(xué);2011年

6 黃強(qiáng);零傳動(dòng)滾齒機(jī)精度控制及顫振抑制技術(shù)研究[D];重慶大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 馬江波;基于Hadoop的滾齒機(jī)故障信息分析平臺(tái)與分析技術(shù)研究[D];重慶大學(xué);2016年

2 呂盈;滾齒加工切削力分析及切削參數(shù)優(yōu)化[D];山東大學(xué);2017年

3 謝小卿;滾齒機(jī)調(diào)整參數(shù)計(jì)算系統(tǒng)開發(fā)[D];重慶大學(xué);2008年

4 胡林橋;網(wǎng)絡(luò)智能滾齒機(jī)故障診斷及維護(hù)系統(tǒng)設(shè)計(jì)與應(yīng)用研究[D];重慶大學(xué);2012年

5 賈煥飛;網(wǎng)絡(luò)智能滾齒機(jī)終端系統(tǒng)支持平臺(tái)的研究與應(yīng)用[D];重慶大學(xué);2012年

6 謝瑞木;干法滾齒切削理論及其工藝參數(shù)化優(yōu)化方法研究[D];浙江大學(xué);2013年

7 劉小旭;滾齒振動(dòng)動(dòng)力學(xué)仿真分析及顫振抑制方法研究[D];重慶大學(xué);2015年

8 賈斐;面向服務(wù)型制造的滾齒機(jī)備件資源配置研究[D];重慶大學(xué);2014年

9 劉明輝;滾齒機(jī)精切硬齒面齒輪的動(dòng)態(tài)測(cè)試與有限元模態(tài)分析[D];遼寧工程技術(shù)大學(xué);2002年

10 李先廣;面向綠色制造的高速干式切削滾齒機(jī)設(shè)計(jì)與評(píng)價(jià)技術(shù)研究[D];重慶大學(xué);2003年

,

本文編號(hào):2408283

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2408283.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶68506***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com