釤鐵合金滲氮動力學實驗研究
[Abstract]:Since the 1990s, many researchers have carried out research work on samarium ferroalloy nitriding, but at present most samarium ferroalloy nitriding is mainly concentrated in low temperature solid powder nitriding, its biggest disadvantage is the long nitriding time. The nitridation is uneven and the nitriding efficiency is low. Aiming at the shortcoming of low temperature solid powder nitriding, this paper presents the nitriding of samarium ferroalloy melt. In this paper, the nitriding kinetics model of samarium ferroalloy bottom blowing bubble is established, and the formation model of bottom blowing bubble is studied: the relationship between the minimum pressure of bubble formation and external pressure and the radius of blowing pipe; Bubble growth model: the higher the external atmospheric pressure, the slower the bubble growth rate; the bubble mass transfer model: in the bubble floating process, the bubble mass transfer rate increases first and then decreases. Finally, the mechanism of aggregation and breakup of bubbles after floating to liquid level is described. Secondly, nitriding experiment of samarium ferroalloy melt was carried out. In this experiment, two nitriding methods were used, one was static nitriding of samarium ferroalloy melt, the other was nitriding with bottom blowing nitrogen bubble of samarium ferroalloy melt. Through the static nitriding experiment of samarium ferroalloy melt, it is found that because of the long standing nitriding time, the samarium volatilization in samarium ferroalloy is serious, and because there is a small amount of air in the furnace cavity, the oxygen and the volatile samarium form the oxide samarium to cover the matrix surface. The diffusion of nitrogen elements into samarium ferroalloy was prevented, so the static nitriding did not achieve a good effect. Samarium ferroalloy bottom blowing nitriding melting time is short, effectively avoiding the volatilization of samarium. There are three phases in the matrix, namely 偽-Fe phase, Sm2Fe17 phase and rich phase. It is found that there are nitrogen elements in the Sm2Fe17 phase, the highest content of which is about 0.9%. It is concluded that there are two reasons why the nitrogen content of samarium ferroalloy does not reach the expected content of nitrogen in Sm2Fe17N3. One reason is that the carbon in samarium ferroalloy material also affects the infiltration of nitrogen atoms. Second, there are 偽-Fe phase and rich phase in the matrix after nitriding, and the matrix is not homogeneous Sm2Fe17 phase. In addition, the increase of nitriding temperature, nitriding time and nitriding flow rate can improve the nitrogen content in samarium ferroalloy.
【學位授予單位】:華北理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TG156.82
【參考文獻】
相關(guān)期刊論文 前10條
1 ;“高性能釤鐵氮各向異性磁粉產(chǎn)業(yè)化技術(shù)研究和開發(fā)”通過驗收和鑒定[J];稀土信息;2014年11期
2 都有為;;磁性材料進展概覽[J];功能材料;2014年10期
3 王東興;張廷安;劉燕;朱小峰;;氧氣底吹造锍過程中氣泡行為的水模實驗[J];東北大學學報(自然科學版);2013年12期
4 閆雪飛;王桂軍;王涌;金良安;;水溶液中氣泡聚并的研究進展[J];化學工業(yè)與工程;2013年06期
5 鄧庚鳳;何桂榮;鄧華軍;黃崛起;;還原擴散法制備釤鐵氮磁性材料的組織結(jié)構(gòu)與性能研究[J];中國稀土學報;2010年06期
6 王民;李紅衛(wèi);于敦波;李擴社;羅陽;;Sm_2Fe_(17)N_x粘結(jié)永磁體磁性能的影響因素[J];金屬功能材料;2010年02期
7 楊崢;;脈沖熔融法測定鈦合金中氧、氮的不確定度評定[J];分析試驗室;2009年S2期
8 黃奧;陶曉林;顧華志;張美杰;汪厚植;胡鐵山;;氣幕擋墻中間包數(shù)理模擬及實踐[J];煉鋼;2009年03期
9 郭廣思;王廣太;于偉業(yè);;Sm_2Fe_(17)N_x的制備[J];稀土;2005年06期
10 朱江江,陳伯義;水面艦船尾流氣泡半徑變化規(guī)律的研究[J];熱科學與技術(shù);2005年02期
相關(guān)博士學位論文 前3條
1 邵品;冶金熔體內(nèi)氣泡行為的數(shù)值模擬研究[D];東北大學;2015年
2 羅陽;快淬釤鐵基化合物的亞穩(wěn)態(tài)結(jié)構(gòu)與磁性[D];北京有色金屬研究總院;2014年
3 劉靜如;非牛頓流體中多氣泡相互作用、聚并與破裂過程的數(shù)值模擬[D];天津大學;2014年
相關(guān)碩士學位論文 前4條
1 肖小飛;釤鐵氮的擴散法制備、結(jié)構(gòu)和磁性[D];中國計量學院;2015年
2 張松林;Sm-Fe-N納米薄片的制備、結(jié)構(gòu)及其磁性能研究[D];昆明理工大學;2014年
3 周航;底吹氣泡在液體中的行為研究[D];東北大學;2013年
4 郭平;Sm_2Fe_(17)N_x/Fe_3Pt系納米永磁材料的制備、組織與磁性能[D];河北工業(yè)大學;2008年
,本文編號:2376800
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2376800.html