H13鋼硬態(tài)銑削切屑相變及加工表面完整性研究
[Abstract]:The hard cutting of H13 steel is characterized by large plastic deformation, high strain and high cutting heat. The crystal in the cutting zone will undergo severe deformation and material transformation, forming a metamorphic layer. The chip is usually serrated, and the existence of sawtooth chip metamorphic layer affects the friction between cutting tool and chip, affects cutting temperature, cutting force and tool wear, etc. Therefore, it is of great significance to study the formation mechanism of chip metamorphic layer. In this paper, the formation mechanism of stress, strain and temperature field in cutting process is studied with the aid of the National Natural Science Foundation. The mechanism of phase transition of chip metamorphic layer is discussed, and the machining surface integrity is analyzed in order to optimize milling process. Provide technical support for obtaining performance-compliant artifacts. The main research work is as follows: (1) the two-dimensional finite element simulation model for hard milling of H13 steel is established. The milling process is simulated and the validity of the simulation results of the finite element model is verified. The model results show that the chip thickness changes from thick to thin in the milling process, and the chip becomes sawtooth in the initial stage of milling. Then, with the movement of the cutter, the chip thickness decreases and the chip becomes a continuous shape. Compared with the experimental results, the error of the simulation cutting force is less than 10, which verifies the accuracy of the finite element model. The variation of cutting temperature with cutting speed and cutting tool radius during milling is studied. (2) based on the results of finite element simulation, the formation process of H13 steel chip and the phase transformation of the modified layer are analyzed. The stress, strain, temperature distribution and experimental metamorphic layer distribution in the chip backside and adiabatic shear band are studied. The results show that the distribution of metamorphic layer on the back side of chip and adiabatic shear zone is highly consistent with stress strain and temperature. The metamorphic layer in adiabatic shear zone is related to grain deformation and recrystallization, and the formation of metamorphic layer on the back of chip is related to phase transformation. The influence of alloying elements, stress and strain energy on austenitic transformation temperature during hard milling was studied theoretically. Combined with the finite element simulation results, the size of the hard milling metamorphic layer is predicted. The error between the prediction result and the experimental result is not more than 15. It is of great significance to study the phase transition mechanism of the metamorphic layer. (3) combined with different cutting parameters, The changes of evaluation indexes of surface integrity of H13 steel hard milling considering the influence of blunt radius of cutting tools are studied. The machined surface morphology is analyzed, and the milling surface morphology has obvious periodicity. The influence of different parameters on surface roughness is analyzed. The empirical model of surface roughness considering the influence of blunt radius of cutting tool is established and the significance test is carried out. The influence of different parameters on residual stress is analyzed, and an empirical model of residual stress based on quadratic polynomial is established. The surface quality of workpiece under different parameters was analyzed by using work hardening as evaluation index. The variation of surface microhardness and hardening degree of surface layer with parameters was studied. It is found that the degree of work hardening increases with the increase of the radius of blunt circle. The microhardness analysis of the subsurface layer of the workpiece shows that the microhardness decreases with the increase of the layer depth, that is, with the increase of the layer depth, the plastic strengthening effect decreases gradually, and the thermal softening effect is gradually strengthened. The effect of thermal softening is greater than that of strengthening in a certain depth, and the hardness is smaller than that of matrix. In this paper, the formation mechanism of chip metamorphic layer is analyzed, and the surface integrity of H13 steel milling is studied, which can provide technical support for revealing milling mechanism of H] 3 steel, guiding milling process and obtaining good surface integrity.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG54
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭興人;切屑形成過(guò)程的破壞問(wèn)題[J];北京航空學(xué)院學(xué)報(bào);1957年02期
2 張春江,苑偉政;鈦合金切屑形成過(guò)程的動(dòng)態(tài)研究[J];航空學(xué)報(bào);1987年03期
3 曲貴民,,徐亦紅,李振加;短螺卷切屑折斷的實(shí)驗(yàn)研究[J];哈爾濱電工學(xué)院學(xué)報(bào);1996年02期
4 鄭敏利,李振加,韋銀利,融亦鳴;形成切屑上向彎曲非折斷插入?yún)^(qū)的理論研究[J];機(jī)械工程學(xué)報(bào);2001年08期
5 李振加,鄭敏利,韋銀利,劉二亮,融亦鳴;切屑空間運(yùn)動(dòng)軌跡及其約束方程的研究[J];機(jī)械工程學(xué)報(bào);2001年12期
6 李啟東,郭全英,張宏;微觀動(dòng)態(tài)切屑形成原理與分析[J];沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào);2002年02期
7 張中民,李振加,鄭敏利,嚴(yán)復(fù)鋼,鄭偉,姜彬,劉二亮,融亦鳴;切屑折斷界限的理論研究[J];機(jī)械工程學(xué)報(bào);2002年08期
8 成群林;柯映林;董輝躍;楊勇;;高速硬加工中切屑成形的有限元模擬[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2007年03期
9 管小燕;任家隆;李偉;杭華;陳文燕;;基于數(shù)值模擬的鈦合金鋸齒狀切屑研究[J];江蘇科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
10 李淼林;;車(chē)削加工過(guò)程切屑形態(tài)分析及仿真[J];機(jī)電工程技術(shù);2010年07期
相關(guān)會(huì)議論文 前2條
1 傅惠南;王成勇;;微薄切屑的形成和特點(diǎn)[A];面向21世紀(jì)的生產(chǎn)工程——2001年“面向21世紀(jì)的生產(chǎn)工程”學(xué)術(shù)會(huì)議暨企業(yè)生產(chǎn)工程與產(chǎn)品創(chuàng)新專(zhuān)題研討會(huì)論文集[C];2001年
2 劉牧宇;洪學(xué)勤;周光莉;梁季夫;;切屑變形的掃描電鏡研究[A];第三次中國(guó)電子顯微學(xué)會(huì)議論文摘要集(二)[C];1983年
相關(guān)博士學(xué)位論文 前10條
1 慶振華;高強(qiáng)度鋼42CrMo硬態(tài)切削切屑形成機(jī)理的研究[D];南京航空航天大學(xué);2015年
2 魯世紅;高速切削鋸齒形切屑的實(shí)驗(yàn)研究與本構(gòu)建模[D];南京航空航天大學(xué);2009年
3 楊奇彪;高速切削鋸齒形切屑的形成機(jī)理及表征[D];山東大學(xué);2012年
4 吳春凌;大應(yīng)變切削制備納米晶/超細(xì)晶材料的研究[D];華南理工大學(xué);2010年
5 蘇國(guó)勝;高速切削鋸齒形切屑形成過(guò)程與形成機(jī)理研究[D];山東大學(xué);2011年
6 郭建英;基于不同刀—屑摩擦模型的金屬切削過(guò)程動(dòng)力學(xué)研究[D];太原理工大學(xué);2010年
7 姜峰;不同冷卻潤(rùn)滑條件Ti6Al4V高速加工機(jī)理研究[D];山東大學(xué);2009年
8 朱江新;切削—擠壓成形過(guò)程分析與建模方法研究[D];西安理工大學(xué);2006年
9 李林文;面向硬切削的切削區(qū)域溫度場(chǎng)解析建模及實(shí)驗(yàn)研究[D];華中科技大學(xué);2013年
10 張克國(guó);高速切削變形過(guò)程的類(lèi)流體特性研究[D];山東大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 陳琳;高速切削切屑破壞特性及本構(gòu)關(guān)系的研究[D];沈陽(yáng)理工大學(xué);2015年
2 謝浚堯;基于切屑形態(tài)分析的鈦合金螺旋銑孔熱力耦合模型[D];浙江大學(xué);2016年
3 張平;大芯厚鉆頭內(nèi)刃參數(shù)的實(shí)驗(yàn)研究[D];大連工業(yè)大學(xué);2016年
4 高亞運(yùn);金屬切削過(guò)程中鋸齒形切屑形成機(jī)理研究[D];上海工程技術(shù)大學(xué);2016年
5 胡少華;AZ31鎂合金高速切削行為研究[D];湖南科技大學(xué);2016年
6 齊民;鎳基高溫合金GH3039高速銑削實(shí)驗(yàn)與切屑變形分析[D];遼寧工程技術(shù)大學(xué);2014年
7 杜倩倩;硬態(tài)車(chē)削淬硬鋼切屑形成機(jī)理及表面完整性研究[D];濟(jì)南大學(xué);2016年
8 閆振國(guó);H13鋼硬態(tài)銑削切屑相變及加工表面完整性研究[D];山東大學(xué);2017年
9 李娜;虛擬車(chē)削系統(tǒng)及切屑預(yù)測(cè)可視化的研究[D];天津大學(xué);2007年
10 田雪竹;切屑折斷過(guò)程及其仿真的研究[D];哈爾濱理工大學(xué);2006年
本文編號(hào):2375562
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2375562.html