基于雙目視覺(jué)的齒輪倒角檢測(cè)方法的研究
[Abstract]:Binocular stereo vision measurement system is to simulate the functions of human visual system to obtain the depth information of the measured object in the scene and restore the three-dimensional information of the measured object in the scene. Binocular stereo camera can realize non-contact measurement by collecting image information of gear chamfering angle. Compared with mechanical contact measurement, non-contact measurement has the advantages of high efficiency and no damage to the object under test. Therefore, the research of bevel angle measurement based on binocular vision gear has important theoretical significance and practical value. Based on the principle of binocular stereo vision, this paper studies the three-dimensional measurement method of gear chamfering by moving a single camera with a mechanical device. The main contents of this paper are as follows: (1) using two different cameras, the camera imaging model is established, and the influence of camera distortion in the imaging process is considered. The internal parameters of two cameras and the external parameters between two cameras are obtained by using the calibration method of Zhang Zhengyou. The results of calibration of two camera parameters are used for polar line correction. The binocular stereo vision model is transformed into the ideal parallel binocular vision. (2) the binocular stereo vision measurement method based on the mobile monocular camera is to carry a single camera with a mobile platform to realize the binocular stereo of two cameras. Visual measurement function The measurement of parallel binocular stereo vision is realized by using mechanical device instead of software calculation. The experiments of this method include the stability of the experimental device, the moving center distance of the camera and the measuring experiment. Through the analysis of experimental data, the feasibility of the measurement method is verified. (3) for the stereo matching model based on feature points, this paper studies several edge detection algorithms. According to the actual situation, the corresponding edge extraction algorithm is proposed to fit the edges and solve the feature points. The depth information of the measured object and the spatial coordinates of the feature point are obtained by matching the feature points, and then the measurement requirements are achieved.
【學(xué)位授予單位】:天津科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG86
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李晉惠;岳鑫;高飛;;雙目標(biāo)定中棋盤(pán)格圖像角點(diǎn)樣本篩選及標(biāo)定[J];西安工業(yè)大學(xué)學(xué)報(bào);2016年05期
2 林冬梅;張愛(ài)華;王平;馬永強(qiáng);楊力銘;劉宗福;;張氏標(biāo)定法在雙目視覺(jué)脈搏測(cè)量系統(tǒng)中的應(yīng)用[J];蘭州理工大學(xué)學(xué)報(bào);2016年02期
3 楊延竹;盛佳偉;;一種基于雙目視覺(jué)的軸類鍛件幾何尺寸測(cè)量方法[J];鍛壓技術(shù);2016年03期
4 李莉;;OpenCV耦合改進(jìn)張正友算法的相機(jī)標(biāo)定算法[J];輕工機(jī)械;2015年04期
5 彭祺;仲思東;屠禮芬;;Cast shadow detection for moving objects based on binocular stereo vision[J];Journal of Central South University;2014年02期
6 時(shí)華;魏琰;楊曦;;基于雙目立體視覺(jué)的智能抓娃娃機(jī)仿真系統(tǒng)標(biāo)定[J];科技信息;2014年01期
7 張頌;謝永杰;;基于雙目視覺(jué)的空間脫靶量測(cè)量技術(shù)研究[J];光學(xué)與光電技術(shù);2013年04期
8 郭海礁;;常用圖像拼接算法綜述[J];科技信息;2012年07期
9 楊明;王海暉;陳君;萬(wàn)妮;;雙目標(biāo)定系統(tǒng)精度提高的方法[J];武漢工程大學(xué)學(xué)報(bào);2012年01期
10 尤波;李楠;沈愛(ài)華;許家忠;;基于雙目立體視覺(jué)技術(shù)的輪式機(jī)器人位姿測(cè)量方法研究[J];機(jī)械設(shè)計(jì)與制造;2011年08期
相關(guān)博士學(xué)位論文 前1條
1 周佳立;雙目立體視覺(jué)及三維反求研究[D];浙江大學(xué);2009年
相關(guān)碩士學(xué)位論文 前6條
1 王瑩;雙目立體視覺(jué)圖像匹配與目標(biāo)定位方法研究[D];哈爾濱工業(yè)大學(xué);2013年
2 謝順意;基于雙目的三維立體重建研究[D];武漢紡織大學(xué);2012年
3 趙陽(yáng);方向可調(diào)濾波器在圖像邊緣檢測(cè)中的應(yīng)用[D];大連理工大學(xué);2009年
4 任文杰;圖像邊緣檢測(cè)方法的研究[D];山東大學(xué);2008年
5 甘金來(lái);圖像邊緣檢測(cè)算法的比較研究[D];電子科技大學(xué);2005年
6 楊海濤;機(jī)器視覺(jué)檢測(cè)算法研究及實(shí)現(xiàn)[D];吉林大學(xué);2004年
,本文編號(hào):2371231
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2371231.html