稀土添加和時(shí)效處理對(duì)Cu-Ni-Si合金組織與性能的影響
發(fā)布時(shí)間:2018-12-09 15:41
【摘要】:隨著發(fā)電機(jī)組容量的提高,對(duì)發(fā)電機(jī)組運(yùn)行的安全性及可靠性提出了更高要求。轉(zhuǎn)子槽楔是發(fā)電機(jī)組的重要部件之一,Cu-Ni-Si合金是目前應(yīng)用最廣泛的槽楔材料。Cu-Ni-Si是一種時(shí)效強(qiáng)化型合金,時(shí)效前冷變形、時(shí)效溫度、時(shí)效時(shí)間是影響性能的關(guān)鍵因素。稀土和稀土氧化物作為有效的添加劑,可改善合金組織和性能。本文采用X射線衍射(XRD)、掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM、HREM)、室溫拉伸、電導(dǎo)率測(cè)量等方法研究Cu-Ni-Si合金時(shí)效過程中的顯微組織、力學(xué)性能和電性能變化;研究稀土和稀土氧化物在合金中的分布和存在形式,以及其對(duì)合金組織和性能的影響及作用機(jī)理。本研究主要結(jié)論如下:1、鑄態(tài)Cu-Ni-Si合金為典型的樹枝晶組織,存在明顯的晶內(nèi)偏析和枝晶偏析。熱擠壓可消除鑄造缺陷,同時(shí)由于擠壓溫度較高合金發(fā)生動(dòng)態(tài)回復(fù)和再結(jié)晶。熱擠壓后的合金中無明顯第二相析出,合金處于過飽和狀態(tài)。Cu-Ni-Si合金經(jīng)過60%拉拔變形后,在430℃時(shí)效3 h具有最佳的綜合性能,顯微硬度為265.6 HV,抗拉強(qiáng)度為760 MPa,電導(dǎo)率為40.1%IACS。合金在430℃時(shí)效時(shí)發(fā)生有序化轉(zhuǎn)變,550℃時(shí)效時(shí)其析出相主要為Ni2Si,已經(jīng)明顯長(zhǎng)大。Cu-Ni-Si合金在不同時(shí)效溫度下的相變動(dòng)力學(xué)方程為:400℃:φ = 1-exp(-0.7561t0.72678);430℃:φ = 1-exp(-0.9094t0.70005);460℃:φ = 1-exp(-1.1868t0.53943),可見時(shí)效溫度越高,時(shí)效進(jìn)行得越快。2、Cu-Ni-Si合金中添加La后,鑄態(tài)晶粒明顯細(xì)化,La從0.05 wt.%增加到0.5 wt.%,鑄態(tài)晶粒尺寸由2.5 mm減小到1.1 mm。鑄態(tài)組織中除α-Cu相外,還有LaSi2、LaNi3和LaCu2相。隨La量增加,含稀土的第二相逐漸由球狀變?yōu)殚L(zhǎng)條狀或塊狀,尺寸由3~5 μm增加到10~12μm。Cu-Ni-Si合金中添加0.1 wt.%La時(shí),鑄態(tài)合金抗拉強(qiáng)度和斷后伸長(zhǎng)率達(dá)到峰值,分別為430 MPa和17.15%。添加La后,析出順序以及析出相類型發(fā)生了變化。La含量0.1 wt.%的合金在430℃時(shí)效0.5 h后,析出相主要為Ni3Si,并與基體存在共格關(guān)系;時(shí)效2 h后,合金中除Ni3Si相外,還生成了 LaNi3、LaSi2及Ni2Si相,其中Ni3Si和Ni2Si相與基體保持共格關(guān)系,合金處于峰時(shí)效狀態(tài)。3、Cu-Ni-Si合金中添加稀土氧化物L(fēng)SMO后可促進(jìn)等軸晶形成,當(dāng)LSMO量為0.1 wt.%和0.2 wt.%時(shí),鑄錠中心存在大量等軸晶。LSMO在鑄態(tài)合金中的分布與加入量有關(guān),加入量0.1 wt.%時(shí),LSMO主要聚集在枝晶交界處,加入量0.5wt.%時(shí),LSMO在晶粒和晶界處均有分布。LSMO加入量0.1wt.%時(shí),鑄態(tài)合金具有最佳的塑性變形能力,與未加LSMO的合金相比,其斷后伸長(zhǎng)率為22.8%,提高71.4%;抗拉強(qiáng)度為382 MPa,略有下降。對(duì)加入LSMO 0.1wt.%的合金進(jìn)行大變形量冷軋(78%),結(jié)果顯示軋制樣品表面平整,沒有出現(xiàn)開裂現(xiàn)象,這表明該合金具有良好的冷變形能力。
[Abstract]:With the increase of generator capacity, higher requirements are put forward for the safety and reliability of generator set operation. Rotor slot wedge is one of the important parts of generator set, Cu-Ni-Si alloy is the most widely used slot wedge material at present. Cu-Ni-Si is a kind of aging strengthening alloy, cold deformation before aging, aging temperature, Aging time is the key factor affecting the performance. As an effective additive, rare earth and rare earth oxides can improve the microstructure and properties of the alloy. In this paper, X-ray diffraction (XRD), scanning electron microscope (SEM), (SEM), transmission electron microscope (TEM,HREM), tensile at room temperature and conductivity measurement were used to study the microstructure of Cu-Ni-Si alloy during aging. Mechanical and electrical properties; The distribution and existence form of rare earth and rare earth oxides in the alloy were studied. The effect of rare earth and rare earth oxide on the microstructure and properties of the alloy and its mechanism of action were also studied. The main conclusions of this study are as follows: 1. The as-cast Cu-Ni-Si alloy is a typical dendritic structure with obvious intragranular segregation and dendritic segregation. Hot extrusion can eliminate casting defects, and dynamic recovery and recrystallization occur due to high extrusion temperature. There was no obvious precipitation of the second phase in the alloy after hot extrusion, and the alloy was supersaturated. After 60% drawing deformation, Cu-Ni-Si alloy had the best comprehensive properties after aging at 430 鈩,
本文編號(hào):2369637
[Abstract]:With the increase of generator capacity, higher requirements are put forward for the safety and reliability of generator set operation. Rotor slot wedge is one of the important parts of generator set, Cu-Ni-Si alloy is the most widely used slot wedge material at present. Cu-Ni-Si is a kind of aging strengthening alloy, cold deformation before aging, aging temperature, Aging time is the key factor affecting the performance. As an effective additive, rare earth and rare earth oxides can improve the microstructure and properties of the alloy. In this paper, X-ray diffraction (XRD), scanning electron microscope (SEM), (SEM), transmission electron microscope (TEM,HREM), tensile at room temperature and conductivity measurement were used to study the microstructure of Cu-Ni-Si alloy during aging. Mechanical and electrical properties; The distribution and existence form of rare earth and rare earth oxides in the alloy were studied. The effect of rare earth and rare earth oxide on the microstructure and properties of the alloy and its mechanism of action were also studied. The main conclusions of this study are as follows: 1. The as-cast Cu-Ni-Si alloy is a typical dendritic structure with obvious intragranular segregation and dendritic segregation. Hot extrusion can eliminate casting defects, and dynamic recovery and recrystallization occur due to high extrusion temperature. There was no obvious precipitation of the second phase in the alloy after hot extrusion, and the alloy was supersaturated. After 60% drawing deformation, Cu-Ni-Si alloy had the best comprehensive properties after aging at 430 鈩,
本文編號(hào):2369637
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2369637.html
最近更新
教材專著