基于脈沖渦流的多層異種金屬材料內(nèi)部缺陷檢測(cè)研究
[Abstract]:Multilayer dissimilar metal bonding structures have many advantages, such as high specific strength, high specific modulus, strong fatigue and shock absorption performance. This kind of structure is widely used in aerospace, national defense, nuclear industry and other fields. It is of great significance to detect and ensure the quality and safety of the structure. Due to the influence of the inherent short plate and the production environment of the manufacturing means, the kinds of defects which are easy to produce in the laminate bonding are debonding and bubble. In production, assembly and practical use, these processes are accompanied by mechanical processing, collision and structural fatigue, which will lead to cracks, scratches and other defects. Most of these defects are subsurface defects, which are hidden inside the components, which can easily lead to the change of the physical properties of the components, and gradually affect the reliability and security of the components without notice. Non-destructive testing (NDT) is to evaluate the continuity, integrity, reliability and safety of the tested parts by using physical principles and chemical phenomena. Pulse eddy current testing is an important branch of many nondestructive testing technologies. It has the advantages of fast detection speed and deep detection depth compared with other detection methods. In this paper, the pulse eddy current testing is studied for the defect detection of multilayer dissimilar metal bonding structure. The main contents are as follows: (1) based on the theory of pulsed eddy current testing, a two-dimensional axisymmetric detection model is built by using COMSOL multi-physical field coupling simulation software. Through simulation, the influence of the structure parameters of the pulsed eddy current detection sensor on the test results is discussed. The optimal structure parameters of the pulsed eddy current probe are obtained. (2) according to the optimal structure parameters of the pulse eddy current probe, the platform of the pulse eddy current detection system is built. Including the acquisition of the excitation signal, the power amplification of the excitation signal, the development of the excitation and detection probe, the data acquisition and the programming of the upper computer software, Standard samples are used to verify the stability and accuracy of the system. (3) using the developed pulse eddy current testing platform, the defect detection of multi-layer dissimilar metal bonding structures with different sizes of multi-class defects is carried out. The detection data are analyzed in time domain and frequency domain. The detection results of defects in different feature selection cases are discussed emphatically, which include: signal differential signal characteristics in time domain, fundamental wave component amplitude characteristics in frequency domain, third harmonic amplitude characteristics and ratio characteristics between them. Through experiments, the testing depth of the pulsed eddy current testing system for non-ferromagnetic material conductors is up to 8mm (experimental standard specimen: aluminum alloy), and the linear mapping relationship between different depth defects and characteristic signals is analyzed and established. For the internal defect detection of multi-layer dissimilar metal materials, the system in this paper can successfully detect the defects between the first and second layers with the diameter of 5 mm / 4 mm / 3 mm.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG115.28
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 石坤;林樹(shù)青;何得峰;范智勇;李浩;吳鑫;;提離對(duì)脈沖渦流壁厚檢測(cè)的響[J];無(wú)損檢測(cè);2009年12期
2 尹慧琳;王磊;農(nóng)靜;劉世杭;;用于脈沖渦流檢測(cè)的新型數(shù)據(jù)處理方法[J];現(xiàn)代科學(xué)儀器;2010年02期
3 彭學(xué)文;付躍文;;脈沖渦流檢測(cè)信號(hào)的消噪處理[J];計(jì)算機(jī)工程與設(shè)計(jì);2010年16期
4 楊賓峰;羅飛路;;脈沖渦流檢測(cè)系統(tǒng)影響因素分析[J];無(wú)損檢測(cè);2008年02期
5 徐志遠(yuǎn);武新軍;黃琛;康宜華;;有限厚鐵磁性試件脈沖渦流響應(yīng)研究[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年06期
6 鄭中興;韓志剛;;穿透保溫層和防腐層的脈沖渦流壁厚檢測(cè)[J];無(wú)損探傷;2008年01期
7 潘孟春;何峗澤;羅飛路;;基于譜分析的脈沖渦流缺陷3D分類識(shí)別技術(shù)[J];儀器儀表學(xué)報(bào);2010年09期
8 徐志遠(yuǎn);武新軍;黃琛;康宜華;;激勵(lì)參數(shù)和試件電磁參數(shù)對(duì)脈沖渦流檢測(cè)影響的仿真分析[J];無(wú)損檢測(cè);2011年06期
9 傅迎光;王健;孫明璇;劉再斌;范智勇;石坤;;有包覆層鐵磁試件的脈沖渦流檢測(cè)[J];測(cè)試技術(shù)學(xué)報(bào);2013年02期
10 齊勇;劉相彪;李勇;陳振茂;李煒昕;;基于磁場(chǎng)梯度測(cè)量的脈沖渦流檢測(cè)關(guān)鍵技術(shù)研究[J];中國(guó)機(jī)械工程;2014年08期
相關(guān)博士學(xué)位論文 前6條
1 楊賓峰;脈沖渦流無(wú)損檢測(cè)若干關(guān)鍵技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2006年
2 徐志遠(yuǎn);帶包覆層管道壁厚減薄脈沖渦流檢測(cè)理論與方法[D];華中科技大學(xué);2012年
3 邱選兵;基于脈沖渦流連鑄鋼坯無(wú)損檢測(cè)理論與實(shí)驗(yàn)研究[D];太原科技大學(xué);2013年
4 周德強(qiáng);航空鋁合金缺陷及應(yīng)力脈沖渦流無(wú)損檢測(cè)研究[D];南京航空航天大學(xué);2010年
5 黃琛;鐵磁性構(gòu)件脈沖渦流測(cè)厚理論與儀器[D];華中科技大學(xué);2011年
6 陳天璐;海底管道傳感器陣列損傷信息的提取和融合研究[D];上海交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 鄧煒;基于脈沖渦流的多層異種金屬材料內(nèi)部缺陷檢測(cè)研究[D];電子科技大學(xué);2017年
2 潘輝;鐵磁性構(gòu)件的脈沖渦流無(wú)損檢測(cè)方法研究[D];江蘇理工學(xué)院;2015年
3 陳驍;基于脈沖渦流技術(shù)的多層導(dǎo)電結(jié)構(gòu)內(nèi)層缺陷檢測(cè)研究[D];浙江大學(xué);2015年
4 李鳴;脈沖渦流檢測(cè)有限元仿真分析及檢測(cè)系統(tǒng)設(shè)計(jì)研究[D];昆明理工大學(xué);2015年
5 蘇斌;脈沖式渦流檢測(cè)系統(tǒng)激勵(lì)信號(hào)源研制[D];電子科技大學(xué);2014年
6 晏越;提離效應(yīng)對(duì)脈沖渦流檢測(cè)系統(tǒng)影響及其補(bǔ)償方法研究[D];電子科技大學(xué);2014年
7 劉幸馬可;基于脈沖渦流的鋁合金板材缺陷檢測(cè)方法研究[D];電子科技大學(xué);2014年
8 王太平;壓水堆不銹鋼覆面焊縫缺陷的脈沖渦流熱成像檢測(cè)技術(shù)的研究[D];電子科技大學(xué);2015年
9 蔚道祥;帶包覆層鐵磁性管道內(nèi)部腐蝕脈沖渦流檢測(cè)研究[D];南昌航空大學(xué);2015年
10 劉鑫華;含有缺陷的脈沖渦流檢測(cè)系統(tǒng)的數(shù)值建模方法研究[D];電子科技大學(xué);2014年
,本文編號(hào):2351613
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2351613.html