軸頸誤差和電磁偏心對(duì)動(dòng)靜壓電主軸回轉(zhuǎn)精度的影響研究
發(fā)布時(shí)間:2018-11-20 14:48
【摘要】:精密超精密機(jī)床是事關(guān)國計(jì)民生的戰(zhàn)略性裝備,在國防工業(yè)和民用光學(xué)工業(yè)領(lǐng)域關(guān)鍵零件的精密超精密加工中具有獨(dú)特而廣泛的用途。液體動(dòng)靜壓電主軸是精密超精密機(jī)床的核心功能部件,其回轉(zhuǎn)精度對(duì)機(jī)床的加工精度具有決定性影響。但由于主軸動(dòng)不平衡、軸頸形狀誤差、軸系偏心誘發(fā)的電磁激振等因素的綜合作用,導(dǎo)致主軸回轉(zhuǎn)精度的分析預(yù)測(cè)十分困難,目前國內(nèi)外在這方面的研究尚不系統(tǒng)深入,亟需研究形狀誤差及電磁力作用下的液體動(dòng)靜壓電主軸回轉(zhuǎn)精度變化規(guī)律。(1)建立了基于Timoshe nko梁的“軸承—磁拉力—磨削力—主軸系統(tǒng)”轉(zhuǎn)子動(dòng)力學(xué)模型及回轉(zhuǎn)精度評(píng)定方法。采用Timoshenko梁理論和拉格朗日動(dòng)力學(xué)方程推導(dǎo)了主軸單元質(zhì)量矩陣、單元?jiǎng)偠染仃嚭蛦卧枘峋仃?采用Matlab符號(hào)積分功能模塊得到了重力、動(dòng)不平衡力的單元載荷向量;通過整體質(zhì)量、剛度和阻尼矩陣及整體載荷向量的組裝構(gòu)建統(tǒng)一的基于Timoshenko梁的“軸承-磁拉力-磨削力-主軸系統(tǒng)”動(dòng)力學(xué)模型。采用Wilson-θ數(shù)值算法,編程實(shí)現(xiàn)了對(duì)該動(dòng)力學(xué)模型的求解。研究了圓圖像同心圓半徑之差、最小包絡(luò)圓的半徑值和敏感方向同步誤差峰峰值三個(gè)回轉(zhuǎn)精度評(píng)價(jià)指標(biāo)的特點(diǎn)及適用范圍。通過與現(xiàn)有文獻(xiàn)中固有頻率值的對(duì)比,驗(yàn)證了所建立動(dòng)力學(xué)模型和所提出算法的有效性。(2)根據(jù)平行平板擴(kuò)散流動(dòng)模型及兩平板相向運(yùn)動(dòng)產(chǎn)生擠壓流量的物理現(xiàn)象,提出了基于有限體積的小孔節(jié)流深淺腔動(dòng)靜壓軸承非線性油膜力的計(jì)算方法。為解決固定網(wǎng)格難以有效消除低頻迭代誤差的難題,采用多重網(wǎng)格迭代技術(shù)加快了收斂速度,提高了計(jì)算效率。利用歐拉迭代法求出了主軸的平衡位置,施加位移、速度小擾動(dòng)條件后得到了軸承動(dòng)力特性系數(shù)。采用文中方法研究了供油壓強(qiáng)、主軸轉(zhuǎn)速、進(jìn)油孔徑、淺腔深度、初始油膜厚度等參數(shù)對(duì)小孔節(jié)流深淺腔動(dòng)靜壓軸承穩(wěn)態(tài)特性的影響規(guī)律。數(shù)值驗(yàn)證了工程經(jīng)驗(yàn)中深淺腔動(dòng)靜壓軸承的淺腔深度約為初始油膜厚度2倍的合理性。在搭建的實(shí)驗(yàn)平臺(tái)上,測(cè)量了不同轉(zhuǎn)速及供油壓強(qiáng)下油腔的壓強(qiáng)值,驗(yàn)證了基于有限體積法的非線性油膜力計(jì)算方法的正確性。(3)針對(duì)轉(zhuǎn)子傾斜偏心誘發(fā)的不平衡磁拉力計(jì)算模型尚不完善的現(xiàn)狀,提出了利用氣隙域各個(gè)節(jié)點(diǎn)的氣隙磁阻及Maxwell應(yīng)力求解不平衡磁拉力的半解析解法。通過與現(xiàn)有文獻(xiàn)對(duì)比研究,結(jié)果表明:文中磁拉力計(jì)算方法正確可信且較有限元法計(jì)算效率更高;在其余電磁參數(shù)相同的條件下,要盡量減少磁拉力引起的回轉(zhuǎn)誤差,應(yīng)保證電機(jī)極對(duì)數(shù)不少于2。采用Ansoft 2D瞬態(tài)模塊仿真驗(yàn)證了文中給出的某型號(hào)電機(jī)電磁參數(shù)的合理性,并利用文中方法研究了該型號(hào)電機(jī)不平衡磁拉力及電磁剛度隨偏心率及傾斜角度的變化規(guī)律。結(jié)果表明磁拉力與動(dòng)不平衡力數(shù)量級(jí)相同,其對(duì)回轉(zhuǎn)精度的影響不容忽視。(4)定量研究了軸頸形狀誤差對(duì)軸承回轉(zhuǎn)精度的影響規(guī)律,構(gòu)建了軸頸圓度誤差形成回轉(zhuǎn)誤差運(yùn)動(dòng)的力學(xué)模型,揭示了圓度誤差影響回轉(zhuǎn)精度的機(jī)理。該模型可解釋的規(guī)律包括:在不考慮重力和動(dòng)不平衡力等外力條件下,以及在同心工況時(shí),奇數(shù)波圓度誤差產(chǎn)生回轉(zhuǎn)誤差運(yùn)動(dòng),而偶數(shù)波圓度誤差不產(chǎn)生回轉(zhuǎn)誤差運(yùn)動(dòng);在考慮以上諸外力后,軸頸奇數(shù)波圓度誤差比偶數(shù)波圓度誤差對(duì)回轉(zhuǎn)精度的影響更為顯著;回轉(zhuǎn)精度隨轉(zhuǎn)速、圓度誤差幅值的增大而降低;軸頸復(fù)合圓度誤差的奇數(shù)波成份對(duì)回轉(zhuǎn)精度的影響起主導(dǎo)作用。(5)研究揭示了軸頸形狀誤差、磁拉力和磨削力等綜合因素對(duì)電主軸回轉(zhuǎn)精度的影響規(guī)律。結(jié)果表明:2對(duì)極電機(jī)的磁拉力和階躍型磨削力僅改變軸端的平衡位置,對(duì)回轉(zhuǎn)精度的影響不大;在相同條件下,當(dāng)軸頸奇數(shù)波圓度誤差的幅值足夠小時(shí),主軸軸端的回轉(zhuǎn)精度也能達(dá)到精密級(jí)。軸頸圓柱度誤差(錐形圓柱度、鼓形圓柱度及鞍形圓柱度)對(duì)主軸軸端回轉(zhuǎn)精度的影響很小。(6)參與搭建了液體動(dòng)靜壓電主軸實(shí)驗(yàn)臺(tái),對(duì)主軸的固有頻率和回轉(zhuǎn)精度進(jìn)行了實(shí)驗(yàn)測(cè)試。結(jié)果表明:低階固有頻率的理論計(jì)算值與實(shí)驗(yàn)值的吻合度較高;同步回轉(zhuǎn)誤差的實(shí)驗(yàn)測(cè)試值及理論計(jì)算值均小于1μm,且隨轉(zhuǎn)速的變化趨勢(shì)基本一致。從而驗(yàn)證了所建立模型、所提出算法和研究結(jié)果的正確性。本文研究為實(shí)現(xiàn)主軸軸心從原點(diǎn)到平衡位置的動(dòng)態(tài)過渡過程的定量仿真、揭示軸頸形狀誤差對(duì)回轉(zhuǎn)精度的影響規(guī)律提供了重要的理論方法和有效實(shí)現(xiàn)途徑,從而為開發(fā)新型高精度的液體動(dòng)靜壓電主軸和磨削裝備提供有力技術(shù)支持。
[Abstract]:The precision ultra-precision machine tool is a strategic equipment for the national economy and the people's livelihood, and has unique and wide application in the precision ultra-precision machining of key parts in the field of national defense industry and civil optical industry. The fluid dynamic and static pressure electric spindle is the core function part of the precision ultra-precision machine tool, and its rotation precision has a decisive influence on the machining precision of the machine tool. However, due to the unbalance of the main shaft, the error of the journal shape, the electromagnetic shock induced by the eccentricity of the shaft system and other factors, the analysis and prediction of the rotation accuracy of the main shaft are very difficult. At present, the research in this area is not in-depth. It is necessary to study the change law of the rotary precision of the electric spindle under the action of the shape error and the electromagnetic force. (1) The dynamic model of the 鈥淏earing, magnetic and tensile force, grinding force and main shaft system鈥,
本文編號(hào):2345192
[Abstract]:The precision ultra-precision machine tool is a strategic equipment for the national economy and the people's livelihood, and has unique and wide application in the precision ultra-precision machining of key parts in the field of national defense industry and civil optical industry. The fluid dynamic and static pressure electric spindle is the core function part of the precision ultra-precision machine tool, and its rotation precision has a decisive influence on the machining precision of the machine tool. However, due to the unbalance of the main shaft, the error of the journal shape, the electromagnetic shock induced by the eccentricity of the shaft system and other factors, the analysis and prediction of the rotation accuracy of the main shaft are very difficult. At present, the research in this area is not in-depth. It is necessary to study the change law of the rotary precision of the electric spindle under the action of the shape error and the electromagnetic force. (1) The dynamic model of the 鈥淏earing, magnetic and tensile force, grinding force and main shaft system鈥,
本文編號(hào):2345192
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2345192.html
最近更新
教材專著