X70鋼高壓干法GMAW直流正接焊接工藝研究
[Abstract]:China has abundant offshore oil and natural gas resources, including 24 billion tons of offshore oil and 140 trillion cubic meters of natural gas resources. A large number of offshore engineering and submarine pipeline construction put forward higher requirements for the performance of submarine pipeline steel. In recent years, X70 high strength steel has been widely used in domestic submarine pipeline construction, but little research has been done on the maintenance and repair of existing X70 submarine pipeline steel. Underwater high pressure dry GMAW welding technology is the key technology of underwater equipment maintenance, such as ship, offshore platform, submarine pipeline and so on. The high pressure GMAW welding technology of X70 steel will be studied in this paper. The high pressure chamber simulation 0.8-2MPa environment pressure, the X70 steel high pressure GMAW welding process will be studied. Combined with the existing high pressure GMAW welding characteristics, reasonable process experiments were designed and surfacing experiments were carried out on the flat plate to study the effects of power polarity, environmental pressure and welding process parameters on the stability, droplet transfer and weld formation of the welding process. The general range of process parameters which can ensure the stability of welding process under different ambient pressures is obtained. The influence of environmental pressure and process parameters on welding process is summarized, which provides guidance for high pressure GMAW welding of X70 steel. Considering the practical application scenario of X70 submarine pipeline steel, combined with the characteristics of X70 pipeline steel welding and multi-layer multi-pass welding under atmospheric pressure, the multi-layer and multi-pass welding process of X70 steel was studied and tested. The reasonable range of process parameters was calculated. On the basis of this, combined with the rules of high pressure GMAW welding obtained from surfacing welding, the multi-layer and multi-pass welding test of X70 steel was carried out. The macroscopic metallography, microstructure, hardness, impact energy and tensile strength of welded joints were analyzed and summarized. The high pressure GMAW welding process of X70 steel was obtained, and the existing welding process was optimized. The experimental results show that, unlike GMAW welding of X70 steel under atmospheric pressure, the range of process parameters for maintaining the stability of welding process at high pressure becomes narrower. With the increase of environmental pressure, droplet transfer form gradually changed from short-circuit transition to repellent transition, and spatter gradually increased. Increasing welding torch swing can effectively reduce welding leakage and edge cutting. The main microstructure of high pressure GMAW welded joint of X70 steel is acicular ferrite, preeutectoid ferrite and a small amount of upper bainite. The hardness of X70 steel high pressure GMAW welding joint has little change. The microstructure and mechanical properties of the heat affected zone, especially the superheated zone, differ greatly. The superheated zone is composed of coarse martensite structure or fine and uniform pearlite and bainite. Under high pressure, the weld width becomes narrower, the penetration depth becomes deeper, the amount of coarse martensite in the heat affected zone increases and the impact energy decreases. Properly increasing the welding voltage, feeding wire speed and reducing welding speed can effectively increase the tensile strength, impact power and reduce the hardness of the welded joint.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG457.11
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋柱梅;李迪;葉峰;;A study on the application of ICA to GMAW[J];China Welding;2006年02期
2 閆志鴻;張廣軍;高洪明;吳林;;Weld pool boundary and weld bead shape reconstruction based on passive vision in P-GMAW[J];China Welding;2006年02期
3 ;Mechanism of Metal Transfer in DE-GMAW[J];Journal of Materials Science & Technology;2009年03期
4 曾敏,曹彪,黃石生,蒙永民,毛鵬軍;微機(jī)控制逆變GMAW_P焊系統(tǒng)的研究[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期
5 孫廣,何建萍,張春波,白日輝,吳毅雄;參數(shù)可調(diào)多斜率波控GMAW[J];焊接學(xué)報(bào);2005年03期
6 雷玉成,郁雯霞,李彩輝,張成,程曉農(nóng);GMAW溫度場(chǎng)計(jì)算及其焊接質(zhì)量的特征建模[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年03期
7 呂小青;曹彪;曾敏;黃增好;;Effects of current waveform parameters during droplet transfer on spatter in high speed waveform controlled Short-circuiting GMAW彐[J];China Welding;2005年02期
8 馬躍洲;馬文斌;瞿敏;陳劍虹;;Characteristics analyzing and parametric modeling of the arc sound in CO_2 GMAW for on-line quality monitoring[J];China Welding;2006年02期
9 尹力;洪波;屈岳波;李安強(qiáng);龔海;周文軍;;旋轉(zhuǎn)電弧脈沖GMAW焊的信號(hào)處理[J];焊接技術(shù);2006年06期
10 閆志鴻;吳林;張廣軍;高洪明;;Neural network modeling for weld shape process of P-GMAW[J];China Welding;2007年01期
相關(guān)會(huì)議論文 前10條
1 丁文斌;劉維;張姝妍;;Effect of Microstructure on Mechanical Properties for Pulsed GMAW of 5083 Aluminum Alloy in LNG Cryogenic Storage Tanks[A];2009年度海洋工程學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2009年
2 徐晨明;陳善本;;基于圖象法的脈沖GMAW熔寬控制[A];第十次全國焊接會(huì)議論文集(第2冊(cè))[C];2001年
3 雷玉成;郁雯霞;李彩輝;張成;;GMAW溫度場(chǎng)計(jì)算及其焊接質(zhì)量的特征建模[A];第十一次全國焊接會(huì)議論文集(第2冊(cè))[C];2005年
4 宋柱梅;李迪;葉峰;;獨(dú)立元分析在GMAW中的應(yīng)用研究[A];第十一次全國焊接會(huì)議論文集(第2冊(cè))[C];2005年
5 武傳松;胡慶賢;孫俊生;;基于電參數(shù)模糊特征的GMAW焊接過程監(jiān)測(cè)[A];第十次全國焊接會(huì)議論文集(第2冊(cè))[C];2001年
6 殷樹言;陳樹君;劉嘉;黃鵬飛;;基于新型控制法的逆變GMAW工藝特點(diǎn)[A];石油工程焊接技術(shù)交流及焊接設(shè)備焊接材料應(yīng)用研討會(huì)論文專刊[C];2004年
7 馬躍洲;瞿敏;陳劍虹;;GMAW電弧聲參數(shù)化模型及模式識(shí)別應(yīng)用[A];第十一次全國焊接會(huì)議論文集(第2冊(cè))[C];2005年
8 高進(jìn)強(qiáng);武傳松;馮天濤;;GMAW焊焊槍對(duì)中信息及根部間隙的視覺檢測(cè)[A];第十一次全國焊接會(huì)議論文集(第2冊(cè))[C];2005年
9 胡慶賢;武傳松;;基于7維統(tǒng)計(jì)矢量的GMAW焊接過程監(jiān)測(cè)FCM系統(tǒng)[A];第十一次全國焊接會(huì)議論文集(第2冊(cè))[C];2005年
10 耿正;;GMAW引弧過程的研究[A];第十一次全國焊接會(huì)議論文集(第2冊(cè))[C];2005年
相關(guān)重要報(bào)紙文章 前1條
1 ;X80輸氣管線的開發(fā)與生產(chǎn)[N];世界金屬導(dǎo)報(bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 張旺;CO_2激光+脈沖GMAW復(fù)合焊接等離子體行為及熔滴過渡控制研究[D];上海交通大學(xué);2014年
2 韋輝亮;激光-GMAW復(fù)合焊接低合金鋼數(shù)值模擬與試驗(yàn)研究[D];天津大學(xué);2014年
3 王璐璐;鋁合金P-GMAW電弧—熔池多因素耦合行為及機(jī)制[D];上海交通大學(xué);2015年
4 郭波;基于寬動(dòng)態(tài)視覺傳感的GMAW機(jī)器人焊接偏差實(shí)時(shí)識(shí)別及電弧監(jiān)測(cè)研究[D];華南理工大學(xué);2016年
5 陳姬;高速GMAW駝峰焊道形成機(jī)理的研究[D];山東大學(xué);2009年
6 薛誠;旁路耦合電弧GMAW工藝及機(jī)理研究[D];蘭州理工大學(xué);2011年
7 劉安華;高低頻脈沖耦合振蕩對(duì)鋁合金DP-GMAW焊縫成形的影響機(jī)制研究[D];上海交通大學(xué);2014年
8 王瑞超;軟開關(guān)脈沖GMAW焊接電源及弧長穩(wěn)定性研究[D];華南理工大學(xué);2012年
9 李芳;GMAW-P數(shù)字電源設(shè)計(jì)及熔滴過渡特征信號(hào)提取與建模研究[D];上海交通大學(xué);2008年
10 馮杰才;高強(qiáng)鋼厚板激光-GMAW復(fù)合雙面同步橫焊特性研究[D];哈爾濱工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 張皓庭;激光+GMAW復(fù)合熱源焊接熔池與小孔動(dòng)態(tài)行為的數(shù)值模擬[D];山東大學(xué);2015年
2 陳東升;雙絲P-GMAW電弧復(fù)合機(jī)理及焊縫成形影響因素研究[D];山東大學(xué);2015年
3 李琰;用于調(diào)控高速GMAW熔池后向液體流的外加電磁場(chǎng)數(shù)值分析[D];山東大學(xué);2015年
4 鞏金昊;窄間隙雙絲非共熔池GMAW熔池行為研究[D];哈爾濱工業(yè)大學(xué);2015年
5 呂明達(dá);GMAW熔池網(wǎng)格結(jié)構(gòu)光三維視覺傳感[D];哈爾濱工業(yè)大學(xué);2015年
6 張衛(wèi)衛(wèi);激光+GMAW復(fù)合熱源焊焊縫缺陷機(jī)理研究[D];江蘇科技大學(xué);2015年
7 張朝陽;基于ANSYS的AZ31B DE-GMAW數(shù)值模擬[D];南昌大學(xué);2015年
8 聶軍;AZ31B鎂合金非熔化極DE-GMAW焊縫成形研究[D];南昌大學(xué);2015年
9 張菁;雙絲GMAW電弧干擾及焊接工藝研究[D];上海交通大學(xué);2015年
10 吳東升;高速GMAW駝峰形成及雙絲焊抑制機(jī)理研究[D];上海交通大學(xué);2015年
,本文編號(hào):2342103
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2342103.html