選區(qū)激光熔化TC4合金的凝固組織演化規(guī)律研究
[Abstract]:In the forming process of selective laser melting technology, the metal powder rapidly melts into a micro-melting pool under the action of high energy density laser heat source. After the laser heat source is removed, the melt in the molten pool is rapidly cooled and solidified, and the temperature gradient and cooling rate are very high. The temperature distribution has a great influence on the microstructure of the forming parts, and the microstructure of the material determines the mechanical properties, but it is very difficult to measure the temperature in the actual forming process of SLM. In this paper, the temperature field distribution, microstructure evolution and the influence of process parameters of SLM forming TC4 alloy are studied by means of melting and solidification of micro-melting pool. The temperature field of SLM forming TC4 alloy was simulated by ANSYS finite element software. The nonlinear variation of thermal properties of TC4 alloy with temperature and the influence of particle size and morphology on the density and thermal conductivity of TC4 alloy were considered. The temperature field distribution of SLM forming TC4 alloy was obtained by using APDL language to realize the technology of birth and death element and the dynamic loading of heat source. With the loading of laser heat source, the heat accumulates and the temperature increases. The instantaneous temperature of the center of the spot action point is the highest. The isotherm of the front end of the spot action center is more dense than the back end isotherm line, which is mainly caused by the difference of heat conduction between the two ends. Temperature field simulation shows that the maximum temperature gradient of molten pool is 106K / m and the highest cooling rate is 105K / s. The temperature peak value of the thermal cycle curve is affected by the different nodes and process parameters, but the higher the laser power is or the smaller the scanning speed is, the higher the temperature peak value is. The temperature field simulation shows that the width and depth of the micropool formed by the laser heat source of the TC4 alloy powder are only several tens of microns, and the shape of the micro-melting pool is affected by the temperature distribution. Process parameters directly affect the size of the weld pool. With the increase of laser power or the decrease of scanning speed, the width and depth of the pool increase, compared with the laser power and scanning speed. The effect of scanning distance on the size of molten pool is not obvious. The powder particles of TC4 alloy used in SLM forming are approximately spherical, the microstructure is fine acicular martensite, the length of martensite is less than 10 渭 m.SLM to form monolayer single-channel TC4 alloy. It is found that the microstructure in the single pool is composed of a large number of acicular martensite, the average length of the acicular martensite is about 35 渭 m, which is thicker than that of the powder. The shape of the molten pool is sensitive to the process parameters. The laser power and scanning speed are mainly considered. With the increase of laser power or scanning speed, the heat input increases, and the penetration depth and width of the weld pool increase. The angle between the single pool and the surface of the substrate gradually increased. SLM formed the TC4 alloy bulk sample, analyzed the macro and microstructure, found that the upper surface of the block sample is a mutual vertical chessboard structure. The microstructure of the longitudinal section is 尾 columnar crystal grown along the stacking forming direction, and there is a large amount of acicular martensite in the columnar crystal. At room temperature, the main phase composition is 偽 'phase. At the same time, the microstructure changes, the heat input increases, and the columnar crystal structure is thickened by changing the process parameters.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG146.23;TG665
【相似文獻】
相關(guān)期刊論文 前10條
1 熊博文;徐志鋒;嚴(yán)青松;鄭玉惠;;激光熔化沉積鈦合金及其復(fù)合材料的研究進展[J];熱加工工藝;2010年08期
2 李佳桂;史玉升;魯中良;黃樹槐;;選擇性激光熔化成形瞬態(tài)溫度場數(shù)值模擬[J];中國機械工程;2008年20期
3 楊永強;盧建斌;王迪;羅子藝;;316L不銹鋼選區(qū)激光熔化成型非水平懸垂面研究[J];材料科學(xué)與工藝;2011年06期
4 盧建斌;楊永強;王迪;羅子藝;蘇旭彬;;選區(qū)激光熔化成型懸垂面質(zhì)量的影響因素分析[J];激光技術(shù);2011年02期
5 劉杰;楊永強;蘇旭彬;肖冬明;;多零件選區(qū)激光熔化成型效率的優(yōu)化[J];光學(xué)精密工程;2012年04期
6 吳偉輝;楊永強;毛桂生;;316L選區(qū)激光熔化增材制造熔池搭接堆積形貌分析[J];制造技術(shù)與機床;2014年04期
7 張冬云;;采用區(qū)域選擇激光熔化法制造鋁合金模型[J];中國激光;2007年12期
8 師文慶;楊永強;;選區(qū)激光熔化中激光束的傳輸變換及聚焦特性[J];激光技術(shù);2008年03期
9 姚化山;史玉升;章文獻;劉錦輝;黃樹槐;;金屬粉末選區(qū)激光熔化成形過程溫度場模擬[J];應(yīng)用激光;2007年06期
10 吳偉輝;楊永強;王迪;;選區(qū)激光熔化成型過程的球化現(xiàn)象[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2010年05期
相關(guān)會議論文 前8條
1 王黎;魏青松;賀文婷;謝思意;史玉升;;Inconel 625合金選擇性激光熔化成形工藝研究[A];第14屆全國特種加工學(xué)術(shù)會議論文集[C];2011年
2 王華明;張凌云;李安;湯海波;張述泉;方艷麗;李鵬;;高性能航空金屬結(jié)構(gòu)材料及特種涂層激光熔化沉積制備與成形研究進展[A];第九次全國熱處理大會論文集(一)[C];2007年
3 盧克讓;霍世軍;;機加工藝及測試條件對TC4合金室溫拉伸性能的影響[A];陜西省機械工程學(xué)會理化檢驗分會第八屆年會論文集[C];2009年
4 董潔;王永梅;王韋琪;;TC4合金超大規(guī)格棒材鍛造工藝對組織和性能的影響[A];中國有色金屬學(xué)會第十四屆材料科學(xué)與合金加工學(xué)術(shù)年會論文集[C];2011年
5 王建斌;胡宗式;邵軍;陶海林;薛虎明;周書成;;TC4合金棒材的縱向微觀組織[A];第十四屆全國鈦及鈦合金學(xué)術(shù)交流會論文集(下冊)[C];2010年
6 李愛國;甄良;;撞擊條件下TC4合金中的變形局域化以及再結(jié)晶現(xiàn)象[A];科技、工程與經(jīng)濟社會協(xié)調(diào)發(fā)展——中國科協(xié)第五屆青年學(xué)術(shù)年會論文集[C];2004年
7 李英龍;高彩茹;高晗瓔;;TC4合金螺栓熱鐓生產(chǎn)溫度控制模型研究[A];第八屆全國塑性加工理論與新技術(shù)學(xué)術(shù)會議論文集[C];1999年
8 羅雷;毛小南;雷文光;于蘭蘭;楊冠軍;;電子束冷床熔煉TC4合金溫度場模擬[A];第十四屆全國鈦及鈦合金學(xué)術(shù)交流會論文集(上冊)[C];2010年
相關(guān)重要報紙文章 前1條
1 中國紡織工業(yè)聯(lián)合會環(huán)資委 陳立秋;工藝參數(shù)在線測控助力節(jié)能減排[N];中國紡織報;2013年
相關(guān)博士學(xué)位論文 前8條
1 章文獻;選擇性激光熔化快速成形關(guān)鍵技術(shù)研究[D];華中科技大學(xué);2008年
2 蘇旭彬;基于選區(qū)激光熔化的功能件數(shù)字化設(shè)計與直接制造研究[D];華南理工大學(xué);2011年
3 李瑞迪;金屬粉末選擇性激光熔化成形的關(guān)鍵基礎(chǔ)問題研究[D];華中科技大學(xué);2010年
4 王迪;選區(qū)激光熔化成型不銹鋼零件特性與工藝研究[D];華南理工大學(xué);2011年
5 張丹青;鎢及鎢合金的選擇性激光熔化過程中微觀組織演化研究[D];華中科技大學(xué);2011年
6 王小軍;Al-Si合金的選擇性激光熔化工藝參數(shù)與性能研究[D];中國地質(zhì)大學(xué)(北京);2014年
7 王黎;選擇性激光熔化成形金屬零件性能研究[D];華中科技大學(xué);2012年
8 王家敏;冷藏車廂內(nèi)溫度場模擬及其可適用性評價體系研究[D];山東大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 張曉博;Ti合金選擇性激光熔化成型關(guān)鍵技術(shù)的研究[D];陜西科技大學(xué);2015年
2 趙霄昊;激光熔化沉積TC11/Ti_2AlNb雙合金工藝及組織性能[D];北京有色金屬研究總院;2015年
3 譚天漢;異質(zhì)材料選區(qū)激光熔化的成形過程仿真研究及設(shè)備結(jié)構(gòu)設(shè)計[D];北京理工大學(xué);2015年
4 張超;選區(qū)激光熔化技術(shù)制備多孔鉭工藝及性能研究[D];安徽工業(yè)大學(xué);2014年
5 孟祥陳;選擇性激光熔化金屬粉末的能量傳遞和累積研究[D];浙江工業(yè)大學(xué);2015年
6 李雅莉;選區(qū)激光熔化AlSi10Mg溫度場及應(yīng)力場數(shù)值模擬研究[D];南京航空航天大學(xué);2015年
7 陳以強;激光熔化沉積TA15/Ti_2AlNb雙合金工藝及組織性能[D];北京有色金屬研究總院;2016年
8 張恒泉;Si_p/6063鋁基復(fù)合材料激光熔化沉積連接特性與組織性能調(diào)控[D];哈爾濱工業(yè)大學(xué);2016年
9 李珠玲;選區(qū)激光熔化IN718合金的成分變化規(guī)律[D];哈爾濱工業(yè)大學(xué);2016年
10 黃越;移動熱源作用下選擇性激光熔化金屬粉末的溫度場有限元分析[D];華北電力大學(xué)(北京);2016年
,本文編號:2295549
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2295549.html