AZ31鎂合金寬應(yīng)變率下各向異性力學(xué)行為及形變機(jī)制研究
[Abstract]:As a lightweight structural material, magnesium alloy has a wide application prospect in automobile and aviation. However, the strong anisotropy in the room temperature environment limits the wide application of magnesium alloys. In order to overcome this shortcoming, many scholars have carried out a lot of research on macroscopic mechanical behavior and microstructure evolution, but how microstructure evolution affects the macroscopic mechanical behavior of magnesium alloy is still unclear, and lack of micro-scale measurement of macroscopic and microscopic deformation. There is no consensus on the reasons for the anisotropy deformation of magnesium alloys. In this paper, the anisotropic deformation of magnesium alloy under different strain rate is studied by using in-situ real-time synchronous radiation X-ray phase contrast imaging and diffraction multi-scale measurement method. In the process of deformation of magnesium alloy, the macroscopic stress relaxation strain curve, micro-strain field and micro-diffraction pattern are simultaneously acquired. The results show that the stress relaxation strain curve, strain field and diffraction pattern evolution of the specimen under quasi-static compression loading, strain rate 5X0-4s-1, LA-c and LA-c in room temperature environment show significant difference. For LA-c samples, {1012} tensile twinning dominant plastic deformation, the stress gradient is rapidly released by twinning and the strain field becomes uniformized, and the decrease in strain localization degree effectively stimulates the increase of strain hardening rate. However, the plastic deformation in LA-c samples depends mainly on dislocation movement, dislocation is at the defect and entanglement causes strain concentration, and meso-non-uniform deformation results in a decrease of strain hardening rate. The quasi-static compressive loading and strain rate of 10-3s-1 and the macroscopic mechanical properties of magnesium alloy in high-temperature environment are studied. The micro-strain field and the micro-lattice deformation show obvious anisotropy. Due to the difference in the initial texture, the {1012} tensile uniaxial crystals dominate the plastic deformation of the LA-c samples at room temperature and high temperature, while dislocation movements are more prevalent in the LA-c samples. As the temperature increases, the number of {1012} tensile microcrystals excited in the LA-c sample is gradually decreased so that the degree of homogenization of the strain field is reduced; at high temperatures, the {1122} c + a cone slip in the LA-c sample is easier to start, so that the LA-c samples exhibit more uniform deformation at high temperatures. The {1012} tensile stressor and the cone c + aa slip can uniformize the plastic deformation by coordinating the vertical and the deformation parallel to the loading direction. The difference of non-uniformity of strain field results in a significant difference in strain hardening rate of LA-c and LA-c samples. 3. Split Hopkinson pressure rod is loaded with a strain rate of about 5. 5-103 s-1. The dynamic response of magnesium alloy is similar to quasi-static loading. The increase of strain hardening rate is effectively excited by the decrease of the degree of localization of the strain field and the decrease of strain hardening rate due to the increase of the non-uniform deformation of the strain field and the increase of the non-uniformity of the strain field. However, during the initial stage of plastic deformation, the twin dominant plastic deformation during dynamic loading, while the dominant plastic deformation under quasi-static loading is dislocation movement, indicating that the loading strain rate affects the deformation mode of magnesium alloy to some extent. The elastic-plastic transition of the strain rate of 0. 92 ~ 1. 35-0105s-1LA-c and LA-c-c samples showed obvious anisotropy, but the elastic limit was about 0.32GPa. When the impact velocity increases, the crack intensity increases with the increase of the impact velocity, and the difference is reduced; when the impact velocity increases to 400 m/ s, The fracture strength of LA-c and LA-c samples was consistent. A large number of {1012} tensile microcrystals were formed in the LA-c samples, and the number of crystals in LA-c samples was small.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TG146.22
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜賢昌;郭淑蘭;董文;徐學(xué)東;;AZ31B鎂合金A-TIG單一活性劑的設(shè)計與研究[J];熱加工工藝;2014年09期
2 杜九汪;王強(qiáng);;AZ80鎂合金帶內(nèi)筋薄壁殼體擠壓新方法[J];輕合金加工技術(shù);2014年05期
3 劉蒙恩;白莉;袁苗達(dá);樊艷麗;;AZ31鎂合金/AgCu合金/5083鋁合金TLP擴(kuò)散焊研究[J];熱加工工藝;2014年09期
4 鄭堅,,孫成友;關(guān)于材料的應(yīng)變率敏感效應(yīng)[J];力學(xué)與實踐;1996年03期
5 劉曉輝;張茹;劉建鋒;;不同應(yīng)變率下煤巖沖擊動力試驗研究[J];煤炭學(xué)報;2012年09期
6 張萬靜;;用優(yōu)良的比率試驗機(jī)對鈦6-6-2進(jìn)行高應(yīng)變率試驗[J];工程與試驗;1977年Z1期
7 李正升,鄭芝蘭,王培興,張關(guān)云;低碳錳鈮鋼的熱加工性能[J];金屬學(xué)報;1985年01期
8 夏源明;袁建明;楊報昌;;纖維應(yīng)變率相關(guān)的統(tǒng)計本構(gòu)模型的理論與實驗研究[J];復(fù)合材料學(xué)報;1993年02期
9 包合勝;盧維嫻;董新龍;王禮立;;鑄鎂合金ZM_5-T_4本構(gòu)特性的宏觀與微觀研究[J];寧波大學(xué)學(xué)報(理工版);1991年01期
10 張作梅,趙士達(dá);不同溫度、速度條件下,G3、1Cr13鋼、鋁、鉛等塑性變形抗力的研究[J];金屬學(xué)報;1963年02期
相關(guān)會議論文 前10條
1 穆玉明;米也賽爾·阿不都熱依木;韓偉;古麗齊滿·霍加阿不都拉;;肥厚型心肌病左房收縮和舒張功能的應(yīng)變率顯像研究[A];第九屆全國超聲心動圖學(xué)術(shù)會議論文集[C];2007年
2 龐利;金紅;王惠;李欣;陳旭;周振芳;;應(yīng)用應(yīng)變率及實時三維超聲技術(shù)評價急性病毒性心肌炎患兒左心功能的研究[A];中國超聲醫(yī)學(xué)工程學(xué)會第九屆全國腹部超聲醫(yī)學(xué)學(xué)術(shù)會議論文匯編[C];2012年
3 龐利;金紅;王惠;李欣;陳旭;周振芳;;應(yīng)用應(yīng)變率及實時三維超聲技術(shù)評價急性病毒性心肌炎患兒左心功能的研究[A];中華醫(yī)學(xué)會第十三次全國超聲醫(yī)學(xué)學(xué)術(shù)會議論文匯編[C];2013年
4 夏志超;楊龍;隋欣;李世鵬;王寧飛;;中應(yīng)變率(10~1s~(-1)量級)設(shè)備介紹及存在問題分析[A];北京力學(xué)會第20屆學(xué)術(shù)年會論文集[C];2014年
5 吳田;郭瑞強(qiáng);陳金玲;周青;;應(yīng)變率顯像評價冠心病患者左室功能[A];第九屆全國超聲心動圖學(xué)術(shù)會議論文集[C];2007年
6 高繼康;鄭哲嵐;戴曉艇;曹昕陽;鄭鳳華;;定量組織速度顯像和應(yīng)變率顯像對肺心病右室壁舒張功能的研究[A];2008年浙江省超聲醫(yī)學(xué)學(xué)術(shù)年會論文匯編[C];2008年
7 阮雯;孫寅光;徐怡瓊;趙勤華;張鳳如;沈衛(wèi)峰;;二維應(yīng)變率顯像評價慢性收縮性左心功能不全患者心房功能[A];第九屆全國超聲心動圖學(xué)術(shù)會議論文集[C];2007年
8 吳田;郭瑞強(qiáng);周青;陳金玲;;應(yīng)變率顯像評價高血壓和冠心病患者左室心肌功能[A];第九屆全國超聲心動圖學(xué)術(shù)會議論文集[C];2007年
9 戚承志;錢七虎;;巖石等脆性材料動力強(qiáng)度依賴應(yīng)變率的物理機(jī)制[A];錢七虎院士論文選集[C];2007年
10 夏s
本文編號:2290059
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2290059.html