鎂合金杯形件徑向—反向復(fù)合擠壓成形數(shù)值模擬與微觀組織演化研究
[Abstract]:In this paper, AZ31 magnesium alloy, which is widely studied, is selected as the research object. Different inner cavity structures (double cone channel, half circle channel, upper half cone channel) in the radial extrusion process of cup shaped parts are studied. In the lower half cone channel and flat bottom channel, the height h (1 mm / h), the angle (? = 45 擄,? 60 擄) and the billet with different height / diameter ratio (? = 1 / 2 / 2 / 4) of the shearing deformation are simulated by finite element method and the simulation results are analyzed. After determining the inner cavity structure of the upper half conical channel and the 45 擄,? = 4 die parameters, the die design, forming load calculation and forming experiment are carried out. The microstructure morphology of five typical regions of cup shaped parts obtained by radial and reverse composite extrusion is systematically analyzed, and the evolution law of microstructure in the forming process is obtained, and the tensile strength of cup shaped parts formed by extrusion is obtained. The mechanical properties such as hardness were measured, the bottom and side wall of cup were tested by EBSD, and the effect of forming process on the texture weakening of the final sidewall was analyzed. A new technology of differential extrusion is put forward in view of the shortcomings and shortcomings of the forming process. It has certain guiding significance for the production of high strength and toughness magnesium alloy cup. The results show that: (1) the maximum forming load, average equivalent strain and maximum damage value of the upper half conical channel die are moderate, and the deformation is more uniform under the conditions of the cavity structure of the upper half conical channel die and the maximum forming load under the condition of 2 mm, 偽 = 45 擄. With the increase of cone height, the average equivalent strain increases, the deformation becomes inhomogeneous and the forming load increases. Under the condition of height to diameter ratio 位 = 4, the forming load is the smallest, which conforms to the requirement of punch stiffness. (2) the yield strength and elongation of the sidewall of cup parts after radial reverse composite extrusion are only 149.6 MPA / L 17.3. The tensile strength is 285.3 MPA and the hardness is 70.91 HB.This is about 30% higher than that of the cup shaped parts formed by reverse extrusion. But both yield strength and elongation decreased. In the microstructures, the microstructures of the lateral wall show alternate distribution of coarse and fine grains. After the turning angle, the grain has no obvious preferred orientation, the diffuse property of the alloy increases, the obvious strong texture disappears, the texture strength point disappears, and distributes uniformly on the grain. The texture of the alloy is weakened. (3) the simulated pressure value is 1.48 脳 10 ~ 6K N, the upper limit method is 1.93 脳 10 ~ 6K N, and the measured pressure value is 1.63 脳 10 ~ 6K N in the actual forming experiment. Compared with the three groups of measured values, the simulated value is lower than the measured value, and the upper limit value is higher than the measured value. The error of simulation value is 8.67 and that of upper limit method is 18.4. The equivalent effect of the sidewall mouth of the cup is 2.933 calculated by the upper bound method, and the average equivalent strain of the four points picked up by the finite element simulation results is 2.895. The two values are close to each other, which verifies the accuracy of the strain calculation formula to some extent. (4) A new stepped channel structure of differential extrusion is proposed on the basis of radial reverse composite extrusion. The die structure effectively increases the number of shear stress and the equivalent strain value, which may result in mechanical crushing of coarse grain force, increase of equivalent strain and increase of dynamic recrystallization.
【學(xué)位授予單位】:中北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG146.22;TG379
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張如華;底部帶凸緣的杯形件分步脫模方法及其裝置(專利申請?zhí)?021435006)[J];設(shè)備管理與維修;2003年10期
2 況清連;;杯形件的鍛沖結(jié)合工藝[J];鍛壓技術(shù);1981年03期
3 林治平;花江;文濤;;用云紋法分析杯形件冷擠時的變形狀態(tài)[J];模具技術(shù);1986年04期
4 張寶紅,張治民,張星,王強(qiáng),李大旭;杯形件溫引伸數(shù)值模擬[J];塑性工程學(xué)報;2004年03期
5 李長軍;朱家壁;余汪洋;;鹽酸維拉帕米雙脈沖多相釋藥杯形片的研制[J];藥學(xué)學(xué)報;2008年06期
6 鄒崇;蘭丕祥;周永宏;;杯形研具研磨閥球的工藝優(yōu)化試驗(yàn)研究[J];機(jī)電技術(shù);2012年05期
7 陳舜玲;杯形件拉延模的設(shè)計(jì)[J];機(jī)械開發(fā);1998年02期
8 周艷;杯形螺母表面開裂分析[J];理化檢驗(yàn)(物理分冊);2001年06期
9 袁彩華;何文武;劉建生;;杯形件端面缺陷的有限元分析及工藝改進(jìn)[J];礦山機(jī)械;2009年06期
10 姚禮之;杯形止回閥[J];建筑材料工業(yè);1961年20期
相關(guān)博士學(xué)位論文 前2條
1 席翔;杯形波動陀螺零偏漂移機(jī)理及其抑制技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2014年
2 陶溢;杯形波動陀螺關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 關(guān)景銳;薄壁不銹鋼杯形件拉深成形質(zhì)量控制研究[D];華南理工大學(xué);2015年
2 周鑫;高靈敏度杯形振動陀螺的關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2013年
3 賈冰;AZ80鎂合金杯形件反擠壓成形及組織性能研究[D];哈爾濱工業(yè)大學(xué);2016年
4 李云立;硝苯地平杯形緩釋片的研制[D];河北醫(yī)科大學(xué);2013年
5 李宏;鎂合金杯形件徑向—反向復(fù)合擠壓成形數(shù)值模擬與微觀組織演化研究[D];中北大學(xué);2017年
6 羅杜宇;杯形薄壁內(nèi)齒輪旋壓成形工藝分析及質(zhì)量評定研究[D];華南理工大學(xué);2009年
7 趙恒章;杯形件反擠壓成形過程模擬研究[D];西安理工大學(xué);2003年
8 魏鵬;杯形件的復(fù)合擠壓技術(shù)及數(shù)值模擬[D];中北大學(xué);2010年
9 白蕊;AZ80鎂合金杯形件旋轉(zhuǎn)擠壓成形研究[D];中北大學(xué);2015年
10 張勇猛;杯形陀螺的溫度特性及其補(bǔ)償方法研究[D];國防科學(xué)技術(shù)大學(xué);2012年
,本文編號:2277500
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2277500.html