310S鋼焊接熱影響區(qū)粗晶區(qū)晶粒細(xì)化的研究
[Abstract]:310s austenitic heat-resistant stainless steel is used for high level radioactive waste storage tank material. The coarse grain coarsening of (CGHAZ) in heat affected zone (HAZ) is serious, which results in the decrease of mechanical properties. In order to meet the requirement of strength and toughness of coarse grain zone in heat affected zone (HAZ) of high level radioactive waste storage tank, grain growth was restrained by microalloying. In this paper, the microstructure and mechanical properties of 310S steel for storage tank in CGHAZ region were systematically studied by metallographic microscope, scanning observation, transmission electron microscope and sysweld software. The main contents of this paper are as follows: 1.The welding heat source model based on sysweld software is established by numerical simulation of self-fusion welding of steel, and the welding heat cycle curve of CGHAZ region is obtained by simulating the actual experiment of single-pass self-fusion welding. The simulated welding temperature field coincides with the measured temperature field, the welding heat source parameters are selected reasonably, and the welding heat source model is reliable. The phase composition and precipitates of 2.310S steel were studied. The phase composition and the effect of alloying elements on the phase composition of 310S steel were calculated based on Thermo-Calc thermodynamics calculation software. It lays a foundation for the formulation of reasonable range of aluminum in 310S steel and for the subsequent solid solution process, and also provides a reference for the selection of the temperature of the welding heat affected zone of the material. The results show that with the change of Al content, the microstructure of 310S steel remains unchanged, but the number of AlN precipitates changes, and the precipitation phase of AlN changes from secondary precipitation to primary precipitation. With the increase of Nb content, the solid line of 310S steel began to decrease, and the contents of MX phase and Z phase increased gradually. The microstructure and precipitate phase of 310s steel BM and CGHAZ with different Al,Nb content were studied by observing the microstructure of the steel containing Al and Nb. It is found that the grain size of austenite in the coarse grain region is approximately the same as that of the base metal. The results show that both Al and Nb can inhibit the growth of austenite grains in coarse grain region. With the increase of Al content, the precipitate phase of AlN increases gradually. After casting, forging and hot rolling, the 310S steel with more Al content has a residual AlN phase and its particle size is relatively large, which causes damage to the mechanical properties of the material. When Al content is 1.38, 未 -ferrite is precipitated in 310S steel. In the process of casting, Al will preferentially enter 未-ferrite, reducing the content of AlN phase. With the increase of Nb content, the MX phase increases, and the ability of inhibiting austenite grain growth in coarse grain region increases. 4. The effect of AlN content on mechanical properties of 310S steel is studied. It is found that AlN can prevent the grain from deforming during tensile deformation. When the content of Al is high (1.38%), 未 -ferrite extends along the tensile direction, which will play the role of "hard phase", thus increasing the plasticity of the material. Because the microhardness of AlN and 未 -ferrite is higher than that of austenitic matrix, the toughness of 310S steel will be reduced. The tensile strength of the three kinds of Nb containing steels is similar to that of the base metal and coarse grain zone, and the effect of MX phase on tensile strength is not obvious in 310S steel. The impact on the impact work is great. With the increase of Nb content, the impact work decreases. Before and after welding thermal cycling, the impact energy of 0Nb steel decreases obviously, but for the same composition of Nb steel, the impact strength of base metal and coarse grain region is about the same.
【學(xué)位授予單位】:沈陽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG457.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 萬響亮;李光強(qiáng);吳開明;;原位觀察TiN粒子對低合金高強(qiáng)度鋼模擬焊接熱影響區(qū)粗晶區(qū)晶粒細(xì)化作用[J];工程科學(xué)學(xué)報;2016年03期
2 薛攀龍;喇培清;劉輝;孟倩;魏玉鵬;;Al對310S耐熱鋼高溫拉伸性能的影響[J];鋼鐵研究學(xué)報;2015年07期
3 趙雷;楊超;喬漢文;梁軍;鐘群鵬;徐連勇;肖德銘;;焊接工藝對T92/S30432異種鋼接頭δ鐵素體的影響[J];材料熱處理學(xué)報;2014年11期
4 孫曼麗;江波;陳剛;鐘斌;趙海;魯松;;AlN改善車輪鋼韌性的可行性分析[J];鋼鐵研究學(xué)報;2014年08期
5 朱瑞棟;董文超;林化強(qiáng);陸善平;李殿中;;CRH2A型動車組緩沖梁結(jié)構(gòu)焊接殘余應(yīng)力的有限元模擬[J];金屬學(xué)報;2014年08期
6 孫曼麗;江波;陳剛;鐘斌;趙海;魯松;;AlN提高車輪鋼韌性的可行性分析[J];安徽冶金;2014年02期
7 楊辰;房超;童節(jié)娟;;中國發(fā)展核能的必要性[J];核動力工程;2014年S1期
8 吳棟;王鑫;董文超;陸善平;;焊接熱循環(huán)及時效處理對一種Ni-Fe基高溫合金的組織和力學(xué)性能的影響[J];金屬學(xué)報;2014年03期
9 張書權(quán);王仲玨;代禮;文偉;;基于SYSWELD的T型接頭溫度場的數(shù)值模擬[J];熱加工工藝;2011年07期
10 康惠;凌澤民;齊喜岑;;基于SYSWELD對低合金鋼焊接接頭的數(shù)值模擬及實(shí)驗分析[J];熱加工工藝;2010年23期
相關(guān)碩士學(xué)位論文 前10條
1 張杰;鎳對443鐵素體不銹鋼焊接接頭組織及性能的影響[D];太原理工大學(xué);2014年
2 楊得超;高氮無鎳奧氏體不銹鋼焊接工藝與接頭組織性能研究[D];長春工業(yè)大學(xué);2014年
3 宋嘉穎;核能安全發(fā)展的倫理研究[D];南京理工大學(xué);2013年
4 張書權(quán);基于SYSWELD的T型接頭焊接溫度場和應(yīng)力應(yīng)變場的數(shù)值模擬[D];安徽工程大學(xué);2011年
5 劉兆彬;Nb對00Cr12Ti鐵素體不銹鋼組織和性能的影響[D];蘭州理工大學(xué);2011年
6 李振江;基于SYSWELD的焊接接頭溫度場和殘余應(yīng)力場研究[D];北京交通大學(xué);2010年
7 裴海祥;SUPER304H鋼焊接熱影響區(qū)晶粒細(xì)化機(jī)理及控制研究[D];中北大學(xué);2009年
8 陳俊強(qiáng);TCS類不銹鋼焊接熱影響區(qū)組織性能變化規(guī)律研究及合金化措施探討[D];機(jī)械科學(xué)研究總院;2008年
9 李瑞英;基于SYSWELD的三維瞬態(tài)GTAW溫度場與應(yīng)力場的有限元分析[D];中國石油大學(xué);2008年
10 金維松;含氮奧氏體不銹鋼耐局部腐蝕性能的研究[D];昆明理工大學(xué);2007年
,本文編號:2276311
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2276311.html