590MPa級高強(qiáng)鋼輪輞接頭組織性能與失效分析
[Abstract]:Lightweight materials such as high-strength steel plate and aluminum alloy are used in automobile industry. Rim, as an important component of automobile, is an effective way to achieve lightweight. Considering its bearing capacity and safety performance, Low-alloy high-strength steel is still the most used material for rim production. Flash butt welding is a typical resistance welding method. Because of its high efficiency, high speed and high strength joint, it has been the mainstream method of rim welding. As the strength of high strength steel plate increases gradually, the fracture frequency of rim flash butt welding joint increases accordingly. In this paper, the high-strength steel plate of 590CL rim is selected as the base material. Firstly, the characteristics of microstructure and properties of high-strength steel rim flash butt welding joint are studied; secondly, the influence of flash butt welding parameters on the microstructure and properties of the joint is discussed under the change of single factor. The fracture mechanism of the joints in the process of flaring and expanding was analyzed, and the microstructure and properties of the joints were studied by air cooling instead of water cooling after welding, and the strain of the flares was measured by ARGUS strain measurement system. The results show that the composition of 590CL high strength steel sheet conforms to the standard of rim steel. The weld of flash butt welding joint is composed of ferrite and a little bainite, and the base metal is mainly composed of pearlite, ferrite and slightly banded microstructure. The tensile strength of the butt welded joint is 642 MPA, the impact absorption energy is 96.5J, and the microhardness of the weld is the largest, which is related to the acicular ferrite and bainite in the weld. The effect of flash retention and top forging force on the microstructure and properties of flash butt welding joint is significant. When the flash retention is increased from 4mm to 8mm, the microstructure of the weld is serious, the amount of inclusions in the weld increases and the mechanical properties of the butt joint decrease, which is related to the heat input in the flash butt welding. The amount of inclusions in weld decreases with the increase of top forging retention from 2.5mm to 5.5mm. When the top forging force is increased from 6MPa to 9MPa, the ferrite in the weld increases, the bainite is refined and the number of inclusions decreases. Combined with the fracture data of actual rim production, when the single factor changes, the flash retention is 4mm, the forging retention is 3.5mm, and the forging pressure is 8MPa, the mechanical properties of the joint reach the optimum, and the lowest fracture frequency of the actual rim joint is about 2. The fracture mechanism of high strength steel rims during the expansion process was analyzed from macro and micro angle. The fracture modes of rim joints were mainly brittle fracture and ductile fracture. The coarse ferrite structure in the weld is the main reason for the fracture of the expanding joint of the rim. The crack spread to the middle of the rim resulting in brittleness and ductile transition, which results in the crack deflecting from weld to HAZ. The inclusions in the weld, the number of microcracks and the residual stress concentration after welding are the reasons for the fracture of the expanded joints of the rims, and all cracks occur along the whole rim of the flash butt welded joints. Air cooling instead of water cooling after flash butt welding is helpful to improve joint performance. The welds of air-cooled butt welded joints are composed of granular bainite, the amount of inclusions is reduced and no ferrite is found. The tensile strength of flash butt welding joint is 652.7MPa, and the impact absorption energy is 101.1J. there is no bending crack in the bending specimen, and the overall mechanical property is better than that of water-cooled flash butt welding joint. ARGUS strain measurement system was used to measure the main strain, secondary strain and thickness thinning rate. The strain at the rim edge of the flash butt welding joint is smaller than that of the other regions, and the edge fracture of the rim joint is easy to be caused by the flaring force.
【學(xué)位授予單位】:華僑大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG407
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱穎;李文鐵;林均品;林志;;鈹與鋁激光焊接頭組織及裂紋[J];焊接;2006年01期
2 崔維達(dá);戴虹;金毓州;;礦用圓環(huán)鏈焊接質(zhì)量分析之二——接頭組織脆化問題[J];煤炭科學(xué)技術(shù);1987年10期
3 崔蘭,霍立興,張玉風(fēng),荊洪陽,盛曾順,孫寶福;摩擦焊接頭組織與力學(xué)性能[J];天津大學(xué)學(xué)報;1998年01期
4 王志平;黃繼華;班永華;熊進(jìn)輝;張華;趙興科;;反應(yīng)復(fù)合釬焊C_f-SiC/Cu-Ti-C/TC4接頭組織結(jié)構(gòu)[J];材料工程;2008年09期
5 吳松坪;王春明;胡倫驥;胡席遠(yuǎn);;不同切口加工方式下激光拼焊接頭組織與性能研究[J];電焊機(jī);2005年11期
6 劉忠國;;外加磁場對1Cr18Ni9Ti不銹鋼點焊接頭組織和性能的影響[J];寶鋼技術(shù);2007年04期
7 唐淑英;曹惠芳;馬若群;王鋒;;基于不同焊接條件下接頭組織和斷裂韌度分析[J];裝備制造技術(shù);2012年09期
8 阮米慶;1Cr18Ni9Ti對接氬弧焊接頭組織對疲勞性能的影響[J];水利電力機(jī)械;1996年05期
9 張秉剛;何景山;吳林;馮吉才;;鉻青銅與雙相不銹鋼偏鋼電子束焊接頭組織及相構(gòu)成[J];焊接學(xué)報;2005年11期
10 徐峰;;鋁合金儲能焊快速凝固接頭組織分析[J];熱加工工藝;2010年15期
相關(guān)會議論文 前10條
1 邢麗;黃春平;柯黎明;肖兵;;紫銅的攪拌摩擦焊接頭組織與電學(xué)性能測試[A];第十一次全國焊接會議論文集(第1冊)[C];2005年
2 張宇;潘鑫;郭慧英;;大厚度高層建筑用鋼Q460E埋弧焊接頭組織與性能-(1)組織[A];第十六次全國焊接學(xué)術(shù)會議論文摘要集[C];2011年
3 蘆笙;于然東;陳靜;龔晶晶;;Cu-Cr-Zr合金TIG焊工藝及接頭組織與性能分析[A];第十五次全國焊接學(xué)術(shù)會議論文集[C];2010年
4 姚罡;李晉煒;陸業(yè)航;李眾城;;TA15鈦合金電子束焊接接頭組織分析[A];第十四屆全國鈦及鈦合金學(xué)術(shù)交流會論文集(下冊)[C];2010年
5 許良紅;章軍;陳延清;鞠建斌;張永強(qiáng);董線春;金茹;;焊接熱輸入對07MnCrMoVR鋼接頭組織和性能的影響[A];壓力容器先進(jìn)技術(shù)——第七屆全國壓力容器學(xué)術(shù)會議論文集[C];2009年
6 潘暉;毛唯;;Ti15Cu15Ni釬焊Ti_3Al接頭組織研究[A];第十一次全國焊接會議論文集(第1冊)[C];2005年
7 丁成鋼;陳春煥;從國志;尹衍升;;Fe_3Al合金閃光對焊接頭組織與性能研究[A];第十次全國焊接會議論文集(第1冊)[C];2001年
8 王世清;劉金合;;10mm厚鈦合金電子束焊接接頭組織與性能研究[A];第十六次全國焊接學(xué)術(shù)會議論文摘要集[C];2011年
9 張蕾;侯金保;魏友輝;;DZ4125合金TLP接頭組織及力學(xué)性能研究[A];動力與能源用高溫結(jié)構(gòu)材料——第十一屆中國高溫合金年會論文集[C];2007年
10 陳哲源;李晉煒;鎖紅波;劉建榮;;成分調(diào)控對高溫鈦合金電子束焊接接頭組織和力學(xué)性能的影響[A];第14屆全國特種加工學(xué)術(shù)會議論文集[C];2011年
相關(guān)博士學(xué)位論文 前2條
1 劉秀忠;ZA合金的連接及接頭組織與性能研究[D];大連交通大學(xué);2006年
2 龔練;鋼軌超窄間隙焊接熔池形成及接頭性能研究[D];蘭州理工大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 賁海峰;Al-Cu-Li合金電子束焊接工藝及接頭組織與性能[D];南京航空航天大學(xué);2015年
2 汪舸;Cr、V粉末層介入對鈦/鋼電阻釬焊接頭組織和性能的影響機(jī)制[D];蘭州理工大學(xué);2016年
3 楊直達(dá);高強(qiáng)鋁合金攪拌摩擦焊加筋板接頭組織與疲勞性能研究[D];燕山大學(xué);2016年
4 任樹杰;5A06鋁合金電阻點焊接頭組織及力學(xué)性能的研究[D];太原科技大學(xué);2016年
5 王旭;7449鋁合金激光電弧復(fù)合焊工藝及焊后熱處理對接頭組織性能的影響[D];中南林業(yè)科技大學(xué);2017年
6 孫海旋;孕育處理對鎂合金點焊接頭組織及力學(xué)性能的影響[D];吉林大學(xué);2009年
7 李書林;321不銹鋼TIG焊工藝對接頭組織及應(yīng)力腐蝕性能的影響[D];江蘇科技大學(xué);2011年
8 孟根巴根;9Ni鋼焊接材料及接頭組織和性能研究[D];內(nèi)蒙古工業(yè)大學(xué);2009年
9 周鵬;鋁合金新型連接方法及接頭組織性能研究[D];西安建筑科技大學(xué);2006年
10 王皓;焊后熱處理對LDX2101不銹鋼接頭組織和綜合性能的影響[D];太原理工大學(xué);2013年
,本文編號:2216975
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2216975.html