基于粒子群算法與BP網(wǎng)絡(luò)的機床主軸熱誤差建模
[Abstract]:In order to avoid the shortcomings such as low accuracy, poor generality and poor convergence of the spindle thermal error model based on back-propagation (BP) neural network, the fuzzy clustering theory and correlation analysis are used to optimize the temperature variables. In order to reduce the coupling between the temperature variables and the temperature variables, the correlation between the temperature variables and the thermal errors is excavated by selecting the heat sensitive points. Using particle swarm optimization (PSO) algorithm, the reciprocal of square sum of error between predictive output and expected output is taken as individual fitness function, and the performance codes of individual head part and body part are mapped to the number of hidden layer nodes, weights and thresholds of the network, respectively. The topology of BP network is optimized effectively, and the individual velocity and position of PSO are updated by tracking individual extremum and global extremum. The thermal error models based on BP and PSO-BP networks are established respectively. Taking the spindle of precision coordinate boring machine as the research object, a five-point method is adopted to measure the thermal error of high-speed spindle. The results show that the PSO-BP model can be used to predict the spatial position and attitude of the spindle under different working conditions, and the validity of the measurement and modeling method is verified.
【作者單位】: 西安交通大學機械制造系統(tǒng)工程國家重點實驗室;
【基金】:國家科技重大專項資助項目(2014ZX04001051-07) 國家自然科學基金創(chuàng)新群體項目(51421004) 中國博士后科學基金特別資助項目(2014T70910)
【分類號】:TG502
【相似文獻】
相關(guān)期刊論文 前9條
1 陳杰;敘述禮;;基于粒子群算法的多質(zhì)量特性下的選裝優(yōu)化方法研究[J];中國機械工程;2013年18期
2 姜萬錄;梁建全;王益群;王靜;;基于改進粒子群算法的軋制負荷分配優(yōu)化[J];機床與液壓;2011年03期
3 李麗;王國勛;舒啟林;王軍;;加工參數(shù)優(yōu)化中自適應協(xié)同粒子群算法研究[J];工具技術(shù);2014年04期
4 郝培鋒;商景波;薛定宇;;基于粒子群算法的冷連軋張力優(yōu)化計算[J];鋼鐵研究學報;2014年06期
5 徐劍;林獻坤;韓世卓;;基于粒子群算法的雙工位切削參數(shù)優(yōu)化[J];制造業(yè)自動化;2011年17期
6 熊慧;李大衛(wèi);;兩階段法求解1.5維切割問題[J];機械設(shè)計與制造;2007年11期
7 陽劍;孟紅記;紀振平;謝植;;基于混沌粒子群算法的連鑄傳熱模型參數(shù)辨識[J];東北大學學報(自然科學版);2014年05期
8 任會禮;王沖;鐘懿;周浩;鄧創(chuàng)華;;基于改進粒子群算法的高強鋼Y-U本構(gòu)模型參數(shù)反演[J];機械強度;2014年04期
9 ;[J];;年期
相關(guān)碩士學位論文 前4條
1 王偉;大型螺紋旋風硬銑削數(shù)值模擬及工藝參數(shù)優(yōu)化[D];浙江大學;2016年
2 崔永華;基于粒子群算法的混合裝配線計劃調(diào)度系統(tǒng)研究[D];南京航空航天大學;2009年
3 李明皓;基于混合離散粒子群算法的焊接機器人路徑規(guī)劃[D];華東理工大學;2014年
4 彭超;基于粒子群算法的立式淬火爐傳感器優(yōu)化配置研究[D];中南大學;2014年
,本文編號:2216420
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2216420.html