超窄間隙焊接工藝穩(wěn)定性影響因素的研究
[Abstract]:Flux-confined arc ultra-narrow gap welding method has been continuously developed and achieved a lot of achievements. At present, the main problems of this technology are as follows: (1) how to realize the automatic production of flux sheet and flux chain; (2) how to transport the flux chain steadily to the groove to complete the stable welding process and obtain the welding joint with good performance. On the basis of summarizing the advantages and disadvantages of the manufacturing technology and the applicable properties of the flux strip (flux chain), the structure of the flux sheet was redesigned and the designed flux sheet was prepared by pressing the flux strip. In order to solve the problem that a single flux sheet rotates easily around the glass fiber line, a glass fiber mesh flux chain is proposed in this paper. This kind of flux chain not only retains the advantages of glass fiber wire flux chain, but also has good elasticity. When the flux chain is transported to the groove, the flux chain can close to the two sides of the groove, so as to ensure a good fusion between the two sides of the groove and the root after welding. In order to weave the glass fiber mesh designed in this paper, the author made a simple glass fiber mesh knitting machine, and studied the proportion of the glass fiber mesh binder, and found that the ratio of epoxy resin and diluent was 1:2. After coated with binder, glass fiber mesh not only has good elasticity, but also is not easy to break in half fold. In order to realize automatic ultra narrow gap welding, the author designed a four-degree of freedom ultra narrow gap welding experimental device. The device is composed of welding torch, welding fixture and walking mechanism of welding experiment device. The welding torch for ultra-narrow gap welding of flux chain can not only realize the automatic conveying of flux chain, but also adopt the integrated design of wire feeding conductive part of welding torch, which greatly reduces the number of welding torch parts and facilitates the assembly and disassembly of welding torch. The welding fixture is made of four square steel. The welding specimen is clamped by adding bolt and two positioning bolts. The walking mechanism of the welding experimental device has four degrees of freedom and can move and rotate around the Z axis along the X axis and Y axis. Finally, the process test is carried out by using the ultra-narrow gap welding experimental device made by the author, and the influence of this device on the stability of the ultra-narrow gap welding process is explored from three aspects: the power supply with descending external characteristics, the wire offset and the change of the groove width, respectively. Under the same welding process parameters, by comparing the shape of weld cross section and the variation of welding process waveform of welding sample in the mode of decreasing external characteristic power supply and characteristic power supply, it is found that the drop external characteristic power supply can increase the stability of arc. It has better adaptability to ultra narrow gap welding. Previous welding process tests have proved that the distance between wire and flux sheet plays an important role in arc restraint and weld formation, and the quality of weld formation is the best when the distance between the two is 0.35~0.5mm. In this paper, the distance between the wire and the flux sheet is controlled by the diameter of the longitudinal line of the glass fiber mesh. When the wire deviates from the central line of the groove, the force between the wire and the longitudinal line of the glass fiber mesh will be produced. Thus the wire end is deformed and the distance between the end of the wire and the flux sheet is enough to ensure the fusion of the side wall and the root of the groove. The width of the groove on the same welding pass will change in a certain amount in the actual industrial production. This paper simulates this phenomenon through the welding V-shaped welding specimen under certain welding process parameters. It is found that the droplet transfer frequency decreases and the welding current and arc voltage fluctuate with the increase of the groove width.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG44
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓偉;;窄間隙焊接技術(shù)簡(jiǎn)介[J];科技信息;2012年34期
2 ;窄間隙焊接法已在重要產(chǎn)品中應(yīng)用[J];焊接通訊;1980年03期
3 王朋,張富巨;窄間隙焊接技術(shù)及其新進(jìn)展[J];電力建設(shè);1999年08期
4 周方明;王江超;周涌明;張軍;;窄間隙焊接的應(yīng)用現(xiàn)狀及發(fā)展趨勢(shì)[J];焊接技術(shù);2007年04期
5 楊曉紅;;淺談?wù)g隙焊接的應(yīng)用現(xiàn)狀[J];科技信息;2008年28期
6 ;窄間隙焊接 全位置焊接方法[J];焊接;1972年07期
7 ;厚鋼板的窄間隙焊接[J];化工煉油機(jī)械通訊;1977年06期
8 ;厚鋼板窄間隙焊接工藝與設(shè)備技術(shù)鑒定會(huì)議記要[J];電焊機(jī);1977年01期
9 ;大型換熱器管板拼接的窄間隙焊接工藝[J];化工與通用機(jī)械;1977年02期
10 一機(jī)部鄭州機(jī)械科學(xué)研究所窄間隙課題組;;自生磁場(chǎng)控制擺動(dòng)電弧窄間隙焊接[J];電焊機(jī);1981年03期
相關(guān)會(huì)議論文 前3條
1 周軍生;;窄間隙焊接技術(shù)在鋼結(jié)構(gòu)制造中的應(yīng)用[A];中國(guó)鋼結(jié)構(gòu)協(xié)會(huì)成立二十周年慶典暨2004鋼結(jié)構(gòu)學(xué)術(shù)年會(huì)論文集[C];2004年
2 徐建飛;王鑫;馬彩霞;;厚壁管鉆具窄間隙焊接專用機(jī)[A];2007年石油裝備學(xué)術(shù)研討會(huì)論文專輯[C];2007年
3 王鑫;徐建飛;郝榮明;王延文;;厚壁管鉆具窄間隙焊接專機(jī)的研制[A];黑魯石油學(xué)會(huì)鉆井新技術(shù)研討會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前1條
1 鄭韶先;焊劑帶約束電弧超窄間隙焊接方法研究[D];蘭州理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 周鵬博;超窄間隙焊接工藝穩(wěn)定性影響因素的研究[D];蘭州理工大學(xué);2017年
2 李德福;超細(xì)顆粒焊劑約束電弧超窄間隙焊接的實(shí)現(xiàn)[D];蘭州交通大學(xué);2011年
3 王健;基于信息融合的窄間隙焊接檢測(cè)系統(tǒng)研究[D];南昌航空大學(xué);2012年
4 金將;超窄間隙焊接過(guò)程工藝穩(wěn)定性及熔池形成[D];蘭州理工大學(xué);2009年
5 張旭磊;焊劑帶約束電弧超窄間隙焊接的實(shí)現(xiàn)[D];蘭州理工大學(xué);2007年
6 黃斌維;窄間隙焊接中焊劑帶約束電弧的加熱特性[D];蘭州理工大學(xué);2008年
7 田玉吉;固壁約束TIG電弧的特性及超窄間隙焊接的應(yīng)用[D];蘭州理工大學(xué);2008年
8 李宗志;超窄間隙焊槍研制及根焊工藝[D];蘭州理工大學(xué);2011年
9 柴國(guó)云;焊劑片鏈約束電弧中厚板超窄間隙焊接方法研究[D];蘭州理工大學(xué);2017年
10 韓峰;超細(xì)顆粒焊劑約束電弧超窄間隙焊接1Cr18Ni9Ti奧氏體不銹鋼的研究[D];蘭州交通大學(xué);2014年
,本文編號(hào):2207821
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2207821.html