BT40型高速、高精度直聯(lián)式加工中心機(jī)械主軸單元研制
[Abstract]:Equipment manufacturing industry is the pillar industry of national economy and one of the factors that reflect the comprehensive strength of a country. The foundation of equipment manufacturing industry is machine tool. The machine tool with high precision and high efficiency is the guarantee of product quality, and the machine tool which integrates precision and efficiency is the machining center. The spindle unit is one of the main components of the machine tool. The machining workpiece is realized by the spindle unit holding the workpiece or the tool rotating. Therefore, the precision of the spindle unit has an important influence on the accuracy of the machine tool. The spindle unit of machining center is a kind of high rigidity, high precision and modularization functional unit with loose broach mechanism, which is driven by servo motor. It has an important influence on the quality and productivity of machining center. According to the market demand for high speed and high precision spindle unit of machining center, a set of high speed and high precision direct spindle unit is developed through analysis, comparison and theoretical calculation. The research work has the important significance to our country processing center research and development. The main research work of this paper is as follows: according to the engineering requirements, the design requirements of the spindle unit are put forward, and the overall design scheme of the spindle unit is demonstrated. Through demonstration, the mechanical spindle unit, the straight-connected structure BT40 cutter handle and the loose broach scheme are determined. Select P2 grade angular contact ceramic ball bearing, two in series, the whole back to back four row rolling bearing combination structure, light preload, grease lubrication. Main shaft unit sleeve design circulating water cooling mode. The main parameters of shafting structure of spindle unit are designed and calculated. According to the determined rolling bearing combination structure, the optimum support span and spindle radial stiffness of bearing combination are designed and calculated, and the radial runout of spindle cone hole and centering journal is calculated. The axial movement precision of the spindle and the strength of the joint screw of the front and rear cover are checked and calculated, and the type, quantity, stroke and force of the disc spring are calculated by the software compiled by Mubel Company, and the type and quantity of the disc spring are determined. The manufacturing process of the main parts of the spindle unit is worked out, the difficulties encountered in the machining process of the parts are demonstrated in detail, and the corresponding technological measures are put forward. According to the measuring results of the main parts' dimension precision, the assembly process of the spindle unit is worked out, and the length matching size of the spacer sleeve is adjusted repeatedly during the assembly process, and the spindle unit that meets the requirement of rigidity is obtained. The geometric accuracy and comprehensive precision of the developed spindle unit are tested. The main detection contents include: the beat of the inner cone hole of the spindle, the beat of 300 mm near the end of the spindle, the axial movement of the spindle, the temperature rise detection, the vibration detection, the noise detection, the measurement of the axial movement of the spindle, the detection of temperature rise, the detection of vibration and the detection of noise. Static stiffness test, broach experiment, spindle axial error motion detection, spindle radial error motion detection and spindle tilt motion error detection. Check the test result and design calculation result and find the law of calculation error.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG659
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 畢善斌;應(yīng)用優(yōu)化方法解決主軸設(shè)計(jì)問題的一種探討[J];機(jī)床;1986年01期
2 傅維椿;閻一工;;提升機(jī)主軸材料的斷裂特性[J];礦山機(jī)械;1986年04期
3 胡友安;黃幼玲;周軍;;主軸結(jié)構(gòu)優(yōu)化的有限元方法[J];河海大學(xué)常州分校學(xué)報(bào);2007年01期
4 王海濤;李初曄;;提高主軸整體質(zhì)量的設(shè)計(jì)方法研究及應(yīng)用[J];制造技術(shù)與機(jī)床;2013年04期
5 孫銘啟;談?wù)動(dòng)嘘P(guān)剛性主軸設(shè)計(jì)的幾個(gè)問題(續(xù))[J];組合機(jī)床通訊;1965年04期
6 蔣式昕;;切削有色金屬的超高精度主軸[J];儀器制造;1983年06期
7 申旭東;主軸、支承系統(tǒng)設(shè)計(jì)[J];中國釀造;1985年03期
8 楊厚華;夏榮海;;提升機(jī)主軸的逐點(diǎn)計(jì)算法[J];礦山機(jī)械;1985年01期
9 鐘恩光;王明道;;提升機(jī)主軸的優(yōu)化設(shè)計(jì)[J];礦山機(jī)械;1987年06期
10 夏雨;張?jiān)屏?王麗萍;;小型銑削中心主軸的靜態(tài)特性與模態(tài)分析[J];機(jī)械制造;2009年03期
相關(guān)會(huì)議論文 前3條
1 溫建立;熊萬里;黃紅武;;一類新型結(jié)構(gòu)的高速精密主軸單元的振動(dòng)特性分析[A];振動(dòng)利用技術(shù)的若干研究與進(jìn)展——第二屆全國“振動(dòng)利用工程”學(xué)術(shù)會(huì)議論文集[C];2003年
2 趙國平;呂允通;趙維平;邵立秋;;和面機(jī)主軸結(jié)構(gòu)的改進(jìn)[A];中國機(jī)械工程學(xué)會(huì)包裝與食品工程分會(huì)第五屆學(xué)術(shù)年會(huì)論文集[C];1998年
3 萬永麗;;數(shù)控立式銑床的特性及主軸結(jié)構(gòu)的研究[A];2004年十一省區(qū)市學(xué)術(shù)年會(huì)論文集[C];2004年
相關(guān)博士學(xué)位論文 前1條
1 李偉;高速精密氣動(dòng)微主軸的關(guān)鍵技術(shù)研究[D];湖南大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 程茂龍;基于虛擬儀器的主軸動(dòng)靜態(tài)特性測(cè)試系統(tǒng)的研究[D];浙江大學(xué);2015年
2 周玉杰;短電弧數(shù)控銑床主軸結(jié)構(gòu)優(yōu)化設(shè)計(jì)及動(dòng)態(tài)特性分析[D];新疆大學(xué);2015年
3 戎榕;小型動(dòng)靜壓振動(dòng)主軸的設(shè)計(jì)與實(shí)驗(yàn)研究[D];浙江工業(yè)大學(xué);2015年
4 李德生;瓷磚行星端面拋光機(jī)運(yùn)動(dòng)及結(jié)構(gòu)研究[D];景德鎮(zhèn)陶瓷學(xué)院;2013年
5 張璐;數(shù)控加工中心主軸熱特性分析[D];東北大學(xué);2014年
6 王軍潔;摩擦焊機(jī)主軸的靜動(dòng)態(tài)特性的分析與研究[D];西安科技大學(xué);2015年
7 史鑫鵬;基于剛度優(yōu)化的機(jī)床主軸結(jié)構(gòu)設(shè)計(jì)與仿真[D];寧夏大學(xué);2016年
8 于志強(qiáng);氣膜冷卻孔電火花加工用主軸機(jī)構(gòu)優(yōu)化設(shè)計(jì)[D];煙臺(tái)大學(xué);2016年
9 于文東;數(shù)控車床主軸分析與熱特性測(cè)試[D];大連理工大學(xué);2015年
10 管峰;氣體靜壓主軸設(shè)計(jì)及關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2014年
,本文編號(hào):2203953
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2203953.html